Electrostatic pick-ups for debunched beams at INR linac

S. Gavrilo, P. Reinhardt-Nickoulin, I. Vasilyev
Institute for Nuclear Research of RAS, Moscow, Russia

Pick-ups are one of the most widespread non-destructive diagnostics at charged particle accelerators. These detectors, also known as beam position monitors, are generally used for the center-of-mass position measurements of bunched beams. The paper describes the research for infrequent case of debunched beams operation. Measurement peculiarities and distinctive features of electronics are presented. The results of test bench-based measurements and 3D finite element simulations are discussed.

INTRODUCTION

For some time passed by mainly economic reasons the beam is accelerated up to 209 MeV of 600 MeV and is transported near $L_{trans} = 400 \text{ m}$ to the research facilities without acceleration. Due to the momentum spread ($\Delta p/p = \pm 3.5 \times 10^{-3}$ at the base) the beam bunch structure ($T_{\text{bunch}} = 200 \text{ ps}, f_{\text{RF}} = 198.2 \text{ MHz}$) is lost and the measurements are done for the debunched coating beam.

TEST BENCH AND SIMULATIONS

The test bench consists of a copper pipe ($D = 10 \text{ mm}$) placed between two grid plates. A signal generator produces a voltage pulse (500 mV, 100 $\mu$s, 50 Hz) at the pipe, imitating the debunched proton beam.

Generally, plate charge $Q_p$ is integrated on the total pick-up capacitance $C_p$ producing voltage $V_p = Q_p/C_p$. Then voltage amplifier is used to provide gain. $C_p$ is composed of a pick-up plate-to-ground capacitance plus the capacitance of the interconnecting cable.

Unlike floating potentials of the electrodes in case of voltage amplifier, charge amplifier actively keeps the electrodes at zero potential. Its output voltage is always $V_{\text{out}} = -\frac{Q_p}{C_p}$, so pick-up calibration can be done with an arbitrary cable length.

Taking into account electronics noise $\pm 7.5 \text{ mV}$, one can estimate the pick-up resolution $\Delta X$ specifying the ability to measure small beam position displacements.

A conductive pipe with uniform surface distribution of a fixed voltage cannot be an equivalent of a beam. Therefore we need a complementary numerical experiments based on 3D finite element simulations.

SIMULATION RESULTS

Simulations show that a beam "surface" voltage distribution differs considerably from the uniform surface voltage distribution of a conductive pipe, and this difference increases with a beam offset. This effect provides expected qualitative changes of the electrodes responses. The sum and the difference signals dependences lose non-linear tails, whereas the DoS dependence is retained perfectly.