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NONLINEAR ACCELERATOR PROBLEMS VIA WAVELETS:
7. INVARIANT CALCULATIONS IN HAMILTON PROBLEMS

A. Fedorova, M. ZeitlinIPME, RAS, St. Petersburg, Russia

Abstract of the concrete problem. We consider the Lagrangian the-

In thi . f eight tth licati ory related to semiproduct structure and explicit form of
N IS series ot eight papers we present the appiications \%wiation principle and corresponding (semidirect) Euler-

methods from wavelet analysis to polynomial apprOXimaPOincare equations. In section 3 we consider CWT and the

tions for a num%er O.f acgeletr?tphy?ct:; profblemf. In th'f corresponding analytical technique which allows to consid-
paper we consider nvariant formuiation of nonlinear ( der covariant wavelet analysis. In part 8 we consider in the
grangian or Hamiltonian) dynamics on semidirect structur
(relativity or dynamical groups) and corresponding invari

ant calculations via CWT.

Sarticular case of affine Galilei group with the semiproduct
structure the corresponding orbit technique for construct-
ing different types of invariant wavelet bases.

1 INTRODUCTION 2 DYNAMICS ON SEMIDIRECT

This is the seventh part of our eight presentations in which PRODUCTS
we consider applications of methods from wavelet analy- - . _ .
sis to nonlinear acceleratgysics problems. This is a Relativity groups such as Euclidean, Galilei or Poincare

continuation of our results from [1]-[8], in which we con- groups are the particular cases of semidirect product con-

sidered the applications of a number of analytical methocfstrucnon’ which s very useful and simple general construc-

from nonlinear (local) Fourier analysis, or wavelet analy—eI ggr:]n It:fhgergtg”tg:;;y [rgg' We3 mgy;gm;@erfsg i[ahgasw
sis, to nonlinear acceleratphysics problems both general emidFi)rect roduct of ro?ati;%)zgrzd_transgazig:s Ir; eneral
and with additional structures (Hamiltonian, symplectic oP P -ng

guasicomplex), chaotic, quasiclassical, quantum. Wavelggfgmvﬁ hhail\slgs: gum) Zétgvgﬁrg 3;2;1(5? g‘ég \g/rglrj]g 2:1 its
analysis is a relatively novel set of mathematical method P group P

which gives us a possibility to work with well-localized WU?(I::I/aICII;e;XtEZ IZf\t/T:)Ct(I)irnzg??r?aar?Jﬁ &?GLZSQJZL::?S’ on
bases in functional spaces and with the general type y P

operators (differential, integral, pseudodifferential) in suclg:;]liedfitrggt |tsr,0d duﬂtsﬁgcaef é‘b;hi Lg'e al{%e\?vri?hotjricllfettze
bases. In contrast with parts 1-4 in parts 5-8 we try t P 9 =y

take into account before using power analytical approaclg(-&’ v1), (€2, v2)] = ([€1, 2], E1v2 — Eov1), where the in-

es underlying algebraical, geometrical, topological strucquced action off by concatenation is denoted@s:,. Let

tures related to kinematical, dynamical and hidden syn}f; V) €5 =G XV, (L u) €s=G =V, (i,0) € 5" =
metry of physical problems. We described a number ﬁ <V*, g€ = Adgg, gy = Adg_ i, ga denote the induced
concrete problems in parts 1-4. The most interesting caseeft.""ctIon OIg ona (t_he left action of G on Vinduces a Ieft
is the dynamics of spin-orbital motion (part 4). In sec—aCtlon onv® — the_mverse of the trgnspose of the action
tion 2 we consider dynamical consequences of covarian&g V):#v + 9 —+ V' is alinear map given by, (¢) = ¢v,
properties regarding to relativity (kinematical) groups andv = ¥~ — 97 Isits dual. ‘Then adjoint :.;md coadjoint
continuous wavelet transform (CWT) (in section 3) as %ctlons are given by simple concatenftmm,v)(g, u) =
method for the solution of dynamical problems. We intro %> 9" - (9€)v). (9, v)(ﬁia a) = (gp T A (ga), ga). Also,
duce the semidirect product structure, which allows us t5 0€£v@ = voa € G fora € V7, which is a bilin- .
consider from general point of view all relativity groupsear operation i anda. So, we have the coadjoint action:

such as Euclidean, Galilei, Poincare. Then we considg’t’iv)n(?’raﬂi: (Igﬂg—rW(gt?)ﬁgavz/. UhSICg Cﬁnfsticatéo?izﬁi_ .
the Lie-Poisson equations and obtain the manifestation ? onfortie algebra actions we have afternative detinitio

semiproduct structure of (kinematic) symmetry group o ¥ ¢ @ € 97+ For allv € V,a € V7, n € G we have
. o L na,v>=—<voa,n >.
dynamical level. So, correct description of dynamics is . . . .
Now we consider the manifestation of semiproduct

a consequence of correct understanding of real symmetr )
structure of symmetry group on dynamical level. Let

* e-mail: zeitin@math.ipme.ru F, G be real valued functions on the dual spgce n €
t http:/mww.ipme.ru/zeitlin.html; http:/mww.ipme.nw.ru/zeitin.html G*.  Functional derivative of F at: is the unique ele-
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mentsF/ou € G lime,o[F(p + edp) — F(p)]/e =< Then we have four equivalent descriptions of the cor-
du,6F/ép > for all 6u € G*, <,> is pairing be- responding dynamicsl. If a, is fixed then Hamilton’s
tweenG* andG. Define the(+) Lie-Poisson brackets by variational principle’ fff La,(9(t), g(t)dt = 0 holds for
{FGre(p) = £ < p,[6F/op,6G/dp] > . The Lie-  variationssg(t) of ¢(t) vanishing at the endpoint8. g(t)
Poisson equations, determined By= {F, H } orintrinsi-  satisfies the Euler-Lagrange equationsffgr on G.3. The

cally ji = Fadj 5, 1. FOT the left representation of G on gonstrained variational principlef ((¢(t), a(t))dt = 0
V + Lie-Poisson bracket of two functiorfsk : s* — RS poids onG x V*, using variations of anda of the form

given by 56 =1+ [€, 0], da = —na, wheren(t) € G vanishes at the
5f ok endpoints4. The Euler-Poincare equations hold®@r V*
{fak}i(ﬂaa):i<ﬂa[6_a6_]> (1)
s Aot ot ot -
Lo g SOk Skf T AR ¥ T T

) - >y
dpda  dpda
So, we may apply our wavelet methods either on the level

whereé f/dp € G, 3f/da € V are the functional deriva- of yariational formulation or on the level of Euler-Poincare
tives of f. The Hamiltonian vector field of : s* € R gquations.

has the expressioN, (u,a) = F(ady, 5,4 — 6h/da o
a,—0h/dpa). Thus, Hamiltonian equations on the dual of

a semidirect product are [9]: 3 CONTINUOUS WAVELET

TRANSFORM
oh

dh
f=Fadgy 5,1 £ 5a 00 a=t5a (2)  Now we need take intaccount the Hamiltonian or La-
a grangian structures related with systems (2) or (3). There-
So, we can see the explicit contribution to the Poissofore, we need to consider generalized wavelets, which al-
brackets and the equations of motion which come from tHew us to consider the corresponding structures instead of
semiproduct structure. compactly supported wavelet representation from parts 1-
Now we consider according to [9] Lagrangian side oft. In wavelet analysis the following three concepts are
a theory. This approach is based on variational principlassed now: 1). a square integrable representatioof a
with symmetry and is not dependent on Hamiltonian forgroup, 2). coherent states (CS) over G, 3). the wavelet
mulation, although it is demonstrated in [9] that this puretransform associated to U. We consider now their unifi-
ly Lagrangian formulation is equivalent to the Hamiltoni-cation [10]-[12]. LetG be a locally compact group and
an formulation on duals of semidirect product (the corret/, strongly continuous, irreducible, unitary representation
sponding Legendre transformation is a diffeomorphismpf G on Hilbert space{. Let H be a closed subgroup
We consider the case of the left representation and the left G, X = G/H with (quasi) invariant measure and
invariant Lagrangiang@nd L), which depend in addition- ¢ : X = G/H — G is a Borel section in a principal bun-
al on another parameter ¢ 7* (dynamical parameter), dleG — G/H. Then we say thal/ is square integrable
where V is representation space for the Lie group G anaod(H, o) if there exists a non-zero vectgr € # such
L has an invariance property related to both arguments. that0 < [, | < U(c(x))n|® > |*dv(z) =< ®[|4,P > <
should be noted that the resulting equations of motion, the, Y® ¢ #. Given such a vectoy € # called admissi-
Euler-Poincare equations, are not the Euler-Poincare equse for (U, &) we define the family of (covariant) coherent
tions for the semidirect product Lie algebfara VV* or states or wavelets, indexed by points X, as the orbit of
G > V. So, we have the following: n under@, though the representatiéh and the sectiowr
1. There is a left representation of Lie group G on thg10]-[12]: S, = 5,y = U(o(x))n|x € X. So, coherent
vector space V and G acts in the natural way on the lefitates or wavelets are simply the elements of the orbit under
onTG x V* @ h(vg,a) = (hvg, ha). 2. The function U of a fixed vecton, in representation space. We have the
L : TG x V* € R is the left G-invariant.3. Leta; € following fundamental properties:1.Overcompleteness:
V=, LagrangianL,, : TG — R, Lg,(vy) = L(vg,ag). the setS, istotalin# : (S,)1 = 0. 2. Resolution prop-
L., is left invariant under the lift to TG of the left action erty: the square integrability condition may be represented
of G4, on G, whereG,, is the isotropy group of,. 4. asaresolution reIatior]?X N0 () >< No(e)|dv(z) = Ao,
Left G-invariance of L permits us to defife G x VV* —  where A, is a bounded, positive operator with a dense-
R by ¢(g= vy, g7 ag) = L(vg,ao). This relation defines ly defined inverse. Define the linear méap, : # —
forany/ : G x V* — R the left G-invariant function L*(X,dv), (W,®)(x) =< 7,)|® > . Then the range
L : TG xV* - R. 5 Foracurvey(t) € G letbe H, of IV, is complete with respect to the scalar product
£(t) := g(t)~'4(t) and define the curve(t) as the unique < ®|¥ >, =< ®|W,A;'W,"'¥ > andW,, is unitary op-
solution of the following linear differential equation with erator from# onto#,. 1, is Continuous Wavelet Trans-
time dependent coefficientgt) = —¢(t)a(t), with initial ~ form (CWT). 3. Reproducing kernel. The orthogonal pro-
conditiona(0) = ao. The solution can be written a$¢) =  jection fromL?(X, dv) onto,, is an integral operatak,
g(t)Lao. andH, is a reproducing kernel Hilbert space of functions:
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D) = [y Ko(x,y)@(y)dv(y), Ve € H,. The ker- tent (this must be resemble the symplectic or Lie-Poisson
nel is given explicitly byKos (2, y) =< o(x) A ng( y >, integrator theory). We use the point of view of geomet-
if nory € D(AS b, vy € X. So, the functlon@ €  ric quantization theory (orbit method) instead of harmonic
L*(X,dv)isa Wavelet transform (WT) iff it satisfies this analysis. Because of this we can consider (a) — (e) analo-
reproducing relation4. Reconstruction formula. The WT gously. In next part we consider construction of invariant

W, may be inverted on its range by the adjoint operatohases.

W L=Ww; on% toobtalnfomg(x) € D(AZ1),Vz € X
W ' = fX 2) AT o mdv(z), ® € H, * This is in-

We are very grateful to M. Cornacchia (SLAC), W. Her-
rmannsfeldt (SLAC) Mrs. J. Kono (LBL) and M. Laraneta

verse WT. IfA; 1 |s bounded thery,, is caIIed a frame, if (UCLA) for their permanent encouragement.

A, = A thenSg is called atight frame. This two cases are
generalization of a simple case, wh&nis an (ortho)basis.

The most simple cases of this construction are:
1. H = {e}. This is the standard construction of WT [
over a locally compact group. It should be noted that the
square integrability of U is equivalent to U belonging to the
discrete series. The most simple example is related to th
affine(ax 4 b) group and yields the usual one-dimensional
wavelet analysigr (b, a) f](x) = J=f (*3*). ForG =
SIM(2) = R? = (R x SO(2)), the similitude group
of the plane, we have the corresponding two-dimensiona[l3]
wavelets. 2. H = H,, the isotropy (up to a phase) sub-
group of 5: this is the case of the Gilmore-Perelomov
CS. Some cases of group G a@. Semisimple groups,
such as SU(N), SU(W), SU(p,q), Sp(NR). b). the Weyl-
Heisenberg groug:w z which leads to the Gabor func-
tions, i.e. canonical (oscillator)coherent states associateP]
with windowed Fourier transform or Gabor transform (see
also part6){r(q, p, ¢) f1(z) = exp(ip(e—p(z—q)) f(x—
q). In this case H is the center @fy 5. In both cas-
es time-frequency plane corresponds to the phase space 164
group representatiorc). The similitude group SIM(n) of
R"(n > 3): for H = SO(n — 1) we have the axisymmet-
ric n-dimensional waveletsd). Also we have the case of
bigger group, containing both affine and WeyI-Heisenberg;[
group, which interpolate between affine wavelet analysi
and windowed Fourier analysis: affine Weyl-Heisenberg
group [12].e). Relativity groups. In a nonrelativistic set-
up, the natural kinematical group is the (extended) Galilei
group. Also we may adds independent space and time di[-]
lations and obtain affine Galilei group. If we restrict the
dilations by the relationiy; = a2, whereay,« are the
time and space dilation we obtain the Galilei-Schrodinger
group, invariance group of both Schrodinger and heat equal[]— ]
tions. We consider these examples in the next section. |
the same way we may consider as kinematical group the
Poincare group. Whet, = « we have affine Poincare or
Weyl-Poincare group. Some useful generalization of that1]
affinization construction we consider for the case of hidden
metaplectic structure in part 6. But the usual representg?]
tion is not square—integrable and must be modified: restric-
tion of the representation to a suitable quotient space of

(4]

the group (the associated phase space in our case) restores

square — integrability¢; — homogeneous space. Our
goal is applications of these results to problems of Hamil-
tonian dynamics and as consequence we need to take into
account symplectic nature of our dynamical problem. Al-
so, the symplectic and wavelet structures must be consis-
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