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NONLINEAR ACCELERATOR PROBLEMS VIA WAVELETS:
2. ORBITAL DYNAMICS IN GENERAL MULTIPOLAR FIELD

A. FedorovaM. Zeitlin, IPME, RAS, St. Petersburg, Russi&

Abstract 2 PARTICLE IN THE MULTIPOLAR
FIELD

In this series of eight papers we present the applications of _ ) )

methods from wavelet analysis to polynomial approximal N& magnetic vector potential of a magnet véthpoles in

tions for a number of accelerator physics problems. In thfg@rtesian coordinates is

p_art we co_n5|d_er ork_)ltal motion in _transyers_e plane for a A= Z Ko fo(,y), (1)

single particle in a circular magnetic lattice in case when ~

we take into account multipolar expansion up to an arbi- . .
b P o wheref, is a homogeneous function ofandy of ordern.

trary finite number. We reduce initial dynamicalproblethrh land i . f b il . f
the finite number (equal to the number of n-poles) of stan- e real and imaginary parts of binomial expansion o

dard algebraical problem and represent all dynamical vari- falz,y) = (x +iy)" (2

ables via an expansion in the base of periodical wavelets. )
correspond to regular and skew multipoles. The cases

n = 2ton = 5 correspond to low-order multipoles:
guadrupole, sextupole, octupole, decapole. Then we have
1 INTRODUCTION in particular case the following equations of motion for sin-
gle particle in a circular magnetic lattice in the transverse
This is the second part of our eight presentations in whioplane(z, y) ([9] for designation):
we consider applications of methods from wavelet analy-

2
sis to nonlinear accelerator physics problems. This is a d_f + (% — k1(5)> T =
continuation of our results from [1]-[8], which is based on ds p(s)
our approach to investigation of nonlinear problems — gen- Fon(8) + ijin(s)
eral, with additional structures (Hamiltonian, symplectic or Re Z p (x+ay)"|, Q)
guasicomplex), chaotic, quasiclassical, quantum, which are n>2 ’
considered in the framework of local (nonlinear) Fourier d2y
analysis, or wavelet analysis. Wavelet analysis is a rela- ds2 + ki(s)y =
tively novel set of mathematical methods, which gives us a
possibility to work with well-localized bases in functional —am |3 kn(s) +ijn(s) (@ + iy)"
spaces and with the general type of operators (differential, — n!

integral, pseudodifferential) in such bases. In this part we _ o
consider orbital motion in transverse plane for a single pagnd the corresponding Hamiltonian:
ticle in a circular magnetic lattice in case when we take into

2 2

account muItipo.Ia_r.expansion up to an arbitrary fin_ite num- H(z,pz,Y,py, S) = prﬂ +
ber. We reduce initial dynamical problem to the finite num- ) )
ber (equal to the number of n-poles) of standard algebraical ( L k1(5)> Ty kl(s)y— (4)
problem and represent all dynamical variables as expansion p(s)? 2 2
in the base of periodical wavelet functions. Our consider- iy

1 1 b d I 1 f 1 1 I I k"l(s) + ZJ”L(S) - (n+1)
ation is based on generalization of variational wavelet ap- ~Re | > TS (z +iy)

proach from part 1. After introducing our starting points n>2

related to multiresolution in section 3, we consider methih take int ¢ arbit but finit
ods which allow us to construct wavelet representation f% €n we may take Into account arbitrary but finite num-
er in expansion of RHS of Hamiltonian (4) and from our

solution in periodic case in section 4. . ; . o .
point of view the corresponding Hamiltonian equations of
motions are not more than nonlinear ordinary differential
*e-mall: zeitin@math.ipme.ru equations with polynomial nonlinearities and variable co-
T http://www.ipme.ru/zeitlin.html; http:/mww.ipme.nw.ru/zeitlin.html  efficients.
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3 WAVELET FRAMEWORK All expansions which we used are based on the following

properties:
Our constructions are based on multiresolution approach.

Because affine group of translation and dilations is inside (1 j k€ Z is a Hilbertian basis of*(R)
the approach, this method resembles the action of a mi-
croscope. We have contribution to final result from each
scale of resolution from the whole infinite scale of spaces. 5 =~

More exactly, the closed subspakgj € Z) corresponds (R) =1 @ Wi

to level j of resolution, or to scale j. We consider a r-regular

multiresolution analysis (MRA) of.?(R") (of course, we or {@o.k, Vjkti>0kez

may consider any different functional space) whichisase- is an orthonormal basis féf (R).
quence of increasing closed subspélkcges

{¢jx}i>orez isan orthonormal basis fof (R.),

(13)

Fig.1 and Fig.2 give the representation of some function
VeocVaicWVycWViCcVa C (5) and corresponding MRA on each level of resolution.

satisfying the following properties:

Avi=0. [Jv;=L*R"),
JEZ JEZ
f(x) €V <=> f(22) € Vj41,
flx) e Vo <=> flxa —k)e Vy, VkeZ". (6)

There exists a functiop € V; such thaf oo 1 (z) = p(z—
k), k € Z"} forms a Riesz basis fo¥y. The function
¢ is regular and localizedy is C"~ 1, »("=1 is almost
everywhere differentiable and for almost evaerye R",
for every integerr < r and for all integer p there exists
constantC,, such that

Figure 1: Analyzed function.
| 0%(z) [< Cp(1 + |z)77 @)

Let po(z) be a scaling function)(z) is a wavelet function

andy;(z) = ¢(x — 7). Scaling relations that defing, ¢ /\/\/\
are

N-—-1
) = arp(2x — Z arpr(2z), (8)
=0

2

B

2

=~
Il

-1

—2
Y() = (=D ar10(2x + k). (9) W

Let indices?, j represent translation and scaling, respec-
tively and

wi(z) = 2j/2<p(2jx -0 (10)

then the sefy; 1.}, k € Z" forms a Riesz basis fdf;. The Figure 2: MRA representation.
wavelet functiomy is used to encode the details between
two successive levels of approximation. L&} be the or-

thonormal complement df; with respect td/;1: 4 VARIATIONAL WAVELET APPROACH

FOR PERIODIC TRAJECTORIES
Vi =V, EPpw;. (11)

We start with extension of our approach from part 1 to
Then just ag/; is spanned by dilation and translations ofthe case of periodic trajectories. The equations of motion

the scaling function, so af&; spanned by translations andcorresponding to Hamiltonian (4) may also be formulated

dilation of the mother wavelagt; (x), where as a particular case of the general system of ordinary dif-
. 4 ferential equationslz; /dt = fi(z;,t), (i,5 = 1,...,n),
Yk (x) = 29/ 2(2x — k). (12) 0 <t <1, wheref; are not more than polynomial func-
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tions of dynamical variables; and have arbitrary depen- where objects\/Z(|¢| < N — 2) can be computed by re-
dence of time but with periodic boundary conditions. Accursive procedure

cording to our variational approach from part 1 we have the _

solution in the following form Mg =279@dHD/2ppd, (19)

n(t) =mOF M, mO) =m0 @) kg, >=i(k

J)nk_ng, Mg =1

=0
where \¥ are again the roots of reduced algebraical sys-
tems of equations with the same degree of nonlinearity aner’, ,
ok (1) corresponds to useful type of wavelet bases (framesira'cal problem. Then_ we use the same.meth.ods as in part
It should be noted that coefficients of reduced algebraical /S @ result we obtained for closed trajectories of orbital
system are the solutions of additional linear problem aridyn@mics described by Hamiltonian (4) the explicit time
also depend on particular type of wavelet construction artp!ution (14) in the base of periodized wavelets (16).

type of bases. This linear problem is our second reducedVe &re very grateful to M. Cornacchia (SLAC), W. Her-

algebraical problem. We need to find in general situatioffnannsfeldt (SLAC), Mrs. J. Kono (LBL) and M. Laraneta
objects (UCLA) for their permanent encouragement

, we reduced our last problem to standard linear alge-
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