Energy Measurement of Relativistic Electrons by Compton Scattering

Ian Hsu, C. - C. Chu, C. - I. Yu, C. - I. Chen, A. - T. Lai and Y. - C. Liu#, P. - K. Tseng, G. - Y. Hsiung,
R. -C. Hsu, C. -P. Wang, R. - C. Chen

Institute of Nuclear Science, National Tsing-Hua University and
Synchrotron Radiation Research Center
Hsinchu, Taiwan 30043, R.O.C

ABSTRACT
Measuring the energy of the backscattered photons from laser
Compton scattering provided us the energy information of the
relativistic electrons in TSL of SRRC. The photon yield,
detector efficiency, detector energy calibration, and detector
energy resolution would affect the final photon counting rate,
and thereby influence the spectrum of the scattered photons.
Method of coincidence measurement was applied and was
discussed in this paper. The first couple test run results were
presented here as well.

1. INTRODUCTION

Compton scattering of laser photons with relativistic
electron beam can yield quasi-monochromatic photon beam.
This energetic photon beam has applications in the
investigation of photonuclear reaction, the calibration of the
detectors, medical image, and electron beam diagnostics[1]

Here we use Compton scattering to measure the electron
beam energy in the storage ring of TLS (Taiwan Light
Source) of SRRC (Synchrotron Radiation Research Center).
The design of the optical system must take the electron beam
behavior into consideration to enhance the backscattered
photon yield. Optical alignment would obviously affected the
photon yield, thereby the optical system should be treated
carefully. The backscattered photons were produced within a
very short time period since the CO2 laser was pulsed with
30ns of pulse width. This fact indicated that the HPGe
detector used in this system would detect only the
background radiation from Bremsstrahlung, which was
produced by the collision of the electrons and the residual
gases/ions in the vacuum chamber for the most of detecting
time. Unfortunately, the contribution of the Bremsstrahlung
radiation in obtaining the photon spectrum was comparable
to the contribution of the scattered photons. Coincidence
measurement would help reducing the background to an
acceptable degree.

2. THEORY

The kinematics associated with the scattering is discussed
by many papers. The process is shown in figure 1. The
scattered photon energy \(k_2\) from laser photons of energy \(k_1\) in
lab. frame is[2]

\[
k_2 = \frac{k_1 (1 - \beta \cos \theta_2) - \chi}{1 - \beta \cos \theta_2 + k_1 (1 - \cos \chi)} / E_e \quad \text{non–head–on} \quad (1.1)
\]

or

\[
k_2 = \frac{4\gamma^2 k_1^2}{l + 4\gamma^2 k_1^2 + E_e^2} \quad \text{head–on} \quad (1.2)
\]

where \(\chi = \theta_2 - \theta_1\), \(\beta = v/c\) with \(v\) and \(c\) the velocities of the
electron and the laser light, \(\theta\) is the angle between the laser
and the scattered photons, and \(E_e\) is the electron energy.

\[\sigma = \frac{\pi r_0^2}{2} \frac{m^2}{k_1 E_e^2} \frac{m^4}{4k_1^2 E_e^2} \times \left(\frac{k_2}{E_e - k_2} \right)^2 - \frac{m^2}{k_1 - E_e} \times \]

\[
\left(\frac{k_2}{E_e - k_2} + \frac{E_e - k_2}{E_e} \right) + \frac{E_e}{E_e - k_2} \int dk_2 \quad (2)
\]

where \(r_0\) is the classical electron radius, and \(m\) is the electron
rest mass. The photon yield \(Y\) per pulse is given by

\[
Y = \frac{2N_e N_p \sigma d}{A \tau} \quad (3)
\]

where \(N_e\) and \(N_p\) are the number of electrons and laser
photons per pulse, \(d\) is the average interaction length, \(A\) is the
larger one of the transverse beam size of the electron beam
and the laser beam, \(\tau\) is the longer one of the pulse
length of the electron beam and the laser beam. \(\sigma\) is the
total cross section of photons and electrons.
3. **SYSTEM DESIGN**

The very low detection efficiency of HPGe detector at high energy (less than 0.1 relative efficiency at 10MeV) limited the choice for the laser to be employed. A lower energy (and hence the higher detection efficiency) of the backscattered photons was thereby the main criteria. The energy of the backscattered photons was 48.42MeV for a He-Ne laser and 29.49MeV for a Nd:YAG laser. A pulsed CO$_2$ laser with wavelength $\lambda = 10.6\mu m$ would produce the backscattered photons with maximum energy up to 3.02MeV and therefore made it suitable for this system. Figure 2 indicates the schematic drawing of the experimental setup.

![Figure 2 Experimental setup](image)

A. Detector Energy Calibration

The traditional energy calibration using 60Co and 137Cs as standard sources was not convincible in this case since the energy of the scattered photons was up to 3.02MeV. The energy calibration was carried out through the gamma decay of 24Na, which was the product of neutron activation of Na$_2$CO$_3$. The decay energies of 24Na are 1.3684MeV, 2.7536MeV and a sum-peak of 4.122MeV. The spectrum is shown as figure 3.

![Figure 3 Spectrum of 24Na](image)

B. Optical System

The optical system design in this experiment is also shown in figure 2. The hole in mirror #2 permitted the Compton backscattered photons passing through to the HPGe detector outside the shielding of the storage ring. This hole would, however, cause the loss of laser photons before their entrance into the vacuum chamber of the storage ring. The beam expander consisting of three ZnSe lenses was therefore designed to alleviate the laser loss on mirror #2. The two ZnSe lenses after the beam expander were thereby to focus the laser within the vacuum chamber, which would lessen the decrease in photon yield as a consequence of the expansion of the laser.

The beam expander could significantly lessen the laser loss; however, it also reduced the photon yield from Compton scattering. This defect was subsequently improved by the focal lenses. How were the magnifying power of the beam expander and the focal length supposed to be for a optimum photon yield? According to the previous study on this experiment\(^4\), the magnifying power of the beam expander was supposed to be five and the focal length was designed as 4.5m for a optimum photon yield.

C. Coincidence Measurement

The using of a pulsed CO$_2$ laser for the sake of its higher peak power made the scattered photons be produced periodically with the same frequency of the repetition rate of the CO$_2$ laser. The pulse width of CO$_2$ laser was 30ns and therefore the photons was produced within 60ns for each laser pulse. The repetition rate of CO$_2$ laser was, however, at most 200Hz, i.e., 5ms of period. This information indicated that the photons were produced within a time less than 1.2×10^{-3}% of the total counting time, e.g., for 3 hours total counting time, the photons were produced only about 0.1296 seconds. What the worse was that the directional background of Bremsstrahlung was considerably high in comparison with the backscattered photons. Subsequently, the coincidence measurement became very important. Figure 4 illustrates the concept of coincidence measurement. In this figure, the laser trigger output provided a gate signal which was first shaped and delayed through a logic shaper and delay (Canberra 2055 & Ortec 427A). The signals of the detector were shaped by the linear gate and stretcher (Canberra 1454) as well after passing through the preamplifier and the amplifier. The coincidence gate opened as the gate signal arrived so as to allow the detector’s signals to pass through to multichannel analyzer(MCA). Figure 5 is the relative time representation for coincidence measurement and the labels (1) to (4) correspond to the labels in figure 4. In this figure, the time length L is the time delay for gate signal (2). The width of gate signal (2) was such that it covered the drift range of the detector’s signal (4).
4. EXPERIMENTAL RESULTS

In this experiment, the beam current of the storage ring of the SRRC was about 2mA to alleviate Bremsstrahlung radiation. Operating under multibunch mode of the storage ring, the number of electron bunches was 200 and the revolution frequency was 2.5MHz. The total counting time in acquiring the spectrum was about 3 hours. Figures 6 and 7 are the spectrum for both the background Bremsstrahlung radiation and the Compton backscattered photons. These figures illustrate the difference between the two kinds of spectrum (Bremsstrahlung and Compton scattering.) Figure 6 illustrates the spectrum obtained under the condition that the magnifying power of the beam expander of the optical system was three, the gate width was 1µs, and the collimator's diameter was 3cm; while figure 7 is for the case that the magnifying power was five, the gate width was 3µs, and the collimator's diameter was 1cm.

5. DISCUSSIONS

In the case of figure 6, the photon yield was about 9.08cps; while in the case of figure 7, the photon yield was about 10.63cps. This result corresponded to our expectation that the photon yield would be larger if the laser beam were bigger, i.e., less power loss on the halo mirror. Besides, the smaller collimator in figure 7 made the spectrum sharper in higher energy part, just as our previous conclusion under computer simulation.

The method of coincident measurement restricted only one signal passing through one gate opened. The restriction resulted from the 4µs shaping time of the amplifier. Since the gate width is less than 5µs, it was impossible for more than two signals passing through one gate. Hence our recent work is to enhance the signal counting method and to increase the photon yield.

6. ACKNOWLEDGMENTS

We'd like to thank Drs. Chuan-Jong Tung, Chu-Fang Wang, Lig-Ji Yuan, and Hsiu-Chin Wu of NTHU for their help by lending us their electronics instrumentation in the test stage of our experiment.

7. REFERENCE

* Supported by the National Science Council of R O. C., Contract NSC81-0417-E-07-545 and SRRC, R. O. C..
Department of Physics, National Tsing-Hua University, Hsinchu, Taiwan 30043, R. O. C..

![Figure 6 Spectrum with the magnifying power of the beam expander being three.](image1)

![Figure 7 Spectrum with the magnifying power of the beam expander being five.](image2)