Multi-bunch Dynamics in Accelerating Structures Including Interaction with Higher Order Modes.

M.Ferrario *, L.Serafini #, F. Tazzioli *
* INFN Laboratori Nazionali di Frascati
INFN Sezione di Milano

Abstract
The case of interaction of not fully relativistic multi- bunch beams with the fundamental and higher order modes of a cavity is not yet covered by existing codes, nevertheless it is a fundamental problem in the design of RF guns and/or collider cavities. A simple model that couples Newton and Maxwell equations, taking into account also space charge, beam loading and build-up effects of higher order modes under beam-tube cutoff frequency, is presented. This approach is intended to fill that gap, avoiding relativistic approximation. It uses a current density description of the beam and a slowly varying envelope approximation for the time evolution of the modes amplitude. A fast running code (HOMDYN), based on this model has been developed and the application to a few typical examples is illustrated.

Table 1
Symbol definitions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_n</td>
<td>mode amplitude</td>
</tr>
<tr>
<td>\hat{e}_n</td>
<td>mode complex amplitude</td>
</tr>
<tr>
<td>ϕ_n</td>
<td>mode phase</td>
</tr>
<tr>
<td>Q_n</td>
<td>quality factor of the mode</td>
</tr>
<tr>
<td>E_n</td>
<td>mode stored energy</td>
</tr>
<tr>
<td>$C.C.$</td>
<td>Complex Conjugate</td>
</tr>
<tr>
<td>L_b</td>
<td>bunch length</td>
</tr>
<tr>
<td>q</td>
<td>bunch charge</td>
</tr>
<tr>
<td>$\delta_{b,h,t}$</td>
<td>head, tail and barycenter coordinates</td>
</tr>
<tr>
<td>R</td>
<td>bunch radius</td>
</tr>
<tr>
<td>c</td>
<td>light velocity</td>
</tr>
<tr>
<td>m_0</td>
<td>electron rest mass</td>
</tr>
<tr>
<td>β</td>
<td>average velocity/light velocity</td>
</tr>
<tr>
<td>J</td>
<td>beam current density</td>
</tr>
<tr>
<td>N_b</td>
<td>n. of bunches in train</td>
</tr>
<tr>
<td>ν_r</td>
<td>repetition rate</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

When treating the evolution of high charge, not fully relativistic electron bunches in RF fields of an accelerating cavity, it is necessary to take into account also the field induced by the beam in the fundamental and higher order modes, and the variation of bunch sizes due to both the external fields and space charge.

For single bunches the problem has been already tackled using PIC codes, which describe the bunch as an ensemble of particles and track their motion, coupled to the E.M. field propagation. The case of long bunch trains would consume an unbearable amount of computer time if treated by a mere extension of the single bunch case.

We have therefore devised a simple model that uses a current density description of the beam and slowly varying envelope approximation (SVEA) for the evolution of the cavity modes. The present version deals only with TM monopole modes: an extended version comprehensive of dipole modes is under development.

The SVEA approximation supposes small field perturbations produced by any single bunch, that add up to give an envelope of any mode field slowly varying on the time scale of its period.

Motion and field equations are coupled together through the driving current term.

II. THE FIELD EQUATIONS

Expressing the electric field E as a sum of normal orthogonal modes:

$E(z,t) = \sum_n A_n(t) \hat{e}_n(z) \sin(\omega_n t + \phi_n(t))$

with $\omega_n = (A_n/2\pi) e^{i\delta_n}$ and:

$\hat{\partial}^2 \hat{e}_n = -k_n^2 \hat{e}_n \int \hat{e}_m \hat{e}_m dv = \delta_{nm}$

the equation for the electric field complex amplitude α_n driven by a beam current distribution $J(z,t)$ in the cavity is [1]:

$\frac{d^2 \alpha_n}{dt^2} + \omega_n \frac{\omega_n}{Q_n} \frac{d\alpha_n}{dt} + \frac{\omega_n^2}{Q_n} \alpha_n = \frac{-e^{-i\omega_n t}}{\varepsilon} \int_v \left(\frac{\partial}{\partial \hat{e}} \cdot \hat{e}_n \right) dv$

with the normalization relations:

$|\alpha_n(t)| = \sqrt{\frac{U_n(t)}{2\varepsilon}}$ $\hat{e}_n(z) = \sqrt{\frac{\varepsilon}{2U_{n,0}}} \hat{E}_{n,0}(z)$

Applying the SVEA approximation hypotheses:

$\frac{d\alpha_n}{dt} << \omega_n \alpha_n$ $\frac{d^2 \alpha_n}{dt^2} << \omega_n^2 \alpha_n$

we obtain the first order equation:

$\frac{d\alpha_n}{dt} + \left(1 + \frac{i}{2Q_n} \right) \omega_n \alpha_n$

$= i \frac{e^{-i\omega_n t}}{2\omega_n \varepsilon} \left(1 + \frac{i}{2Q_n} \right) \int_v \left(\frac{\partial}{\partial t} \hat{e}_n \right) dv +$
The last term is effective only in the fundamental mode equation and accounts for a feeding sinusoidal current of amplitude K_1 representing a power supply.

The current density term can be written as follows:

$$\int \left(\frac{\partial J}{\partial t} + \mathbf{e}_n \right) d\mathbf{v} = \frac{q\beta c}{L_b} \left(\dot{\mathbf{e}}_n(z_b) - \ddot{\mathbf{e}}_n(z_b) \right)$$

The evolution of the field amplitude during the bunch to bunch interval is given by the analytical solution of the homogeneous equation, which connects successive numerical integrations applied during any bunch transit.

III. THE BEAM EQUATIONS

The basic approximation in the description of beam dynamics lies in the assumption that each bunch is represented as a uniform charged cylinder, whose length and radius can vary under a self-similar time evolution, i.e. keeping anyway uniform the charge distribution inside the bunch. The present choice of a uniform distribution is dictated just by sake of simplicity in the calculation of space charge and HOM contributions to the beam dynamics. A further improvement of the model to include gaussian distributed bunches is under way. According to this assumption, and to the general hypothesis that the space charge and HOM effects on beam dynamics are perturbative, we can write, under a paraxial approximation, the equations for the longitudinal motion of the bunch barycenter:

$$\frac{d\beta}{dt} = \frac{e}{3} \sum_n \left(\alpha_n e^{i\omega_n t} + \alpha_n^* e^{-i\omega_n t} \right) \hat{e}_n(z) \frac{dz_b}{dt} = \beta c \frac{m c^2 \gamma}{\gamma}$$

The evolution of the bunch radius R is described according to a recently proposed envelope equation [2], including RF-focusing and space charge effects, transformed into the time-domain:

$$\frac{d^2 R}{dt^2} + \frac{dR}{dt} \frac{d\beta}{dt} g(\beta) + \frac{R}{4\gamma} \left(\left(\frac{dR}{dt} \right)^2 f(\beta) + K_r \right) + \frac{1}{4\gamma} \left(R^2 - \epsilon_n^2 c^2 \right) = 0$$

$$g(\beta) = \frac{1 - \beta^2 - \beta^{-1}}{\beta}$$
$$f(\beta) = \frac{1}{\beta} \left(3 + 2 \right)$$

where I_A is the Alfvén current (17 kA), c_γ the rms normalized beam emittance and the RF average focusing gradient K_r is given by:

$$K_r = \sum_n \left(\frac{2e^2 |\alpha_n|^2}{m c^2} \sum_{s=2}^{\infty} \left(a_{s+1,n} + a_{s-1,n} + 2 a_{s+1,n} a_{s-1,n} \cos \left(2 \left(\phi_n(t) - \phi_{n,s} \right) \right) \right) \right)$$

where the two sums run over the HOM modes (index $n, n=1$ for the fundamental mode) and over the spatial harmonic coefficients $a_{s,n}$ of each mode form factor $e_n(z) = \sum_{s=1}^{\infty} \cos(k_n z)$.

The bunch lengthening is derived adding to the space charge effect, as given by [3], the first order component coming from fundamental and HOM modes, which is simply given by the head-tail difference of the total RF field acting on the bunch:

$$\frac{d^2 L_b}{dt^2} = \frac{e q}{2 c m c^2 R^2} \left(\sqrt{\left(\gamma L_b \right)^2 + R^2 - \left(\gamma L_b + R \right)^2} \right)^4$$

$$+ \frac{e}{3} \sum_n \left(\alpha_n(t) e^{i\omega_n t} \hat{e}_n(z_b) - \hat{e}_n(z_b) \right) + C.C.$$
Figure 1 - Electric field seen by bunches, dashed lines are TM$_{010}$ and TM$_{012}$ fields, full line is the superposition of the two modes.

Figure 2 - Stored energies of TM$_{010}$ for two different injection phases, full line $\phi_0=-90$, dashed line $\phi_0=-60$.

Figure 3 - TM$_{010}$ phase evolution for two different injection phases, full line $\phi_0=-90$, dashed line $\phi_0=-60$.

Figure 4 - Induced energy in TM$_{010}$ is compared for a relativistic ($\gamma=5$ full line) and non-relativistic ($\gamma=2$ dashed line) beam.

Figure 5 - Induced energy in TM$_{012}$ is compared for a relativistic ($\gamma=5$ full line) and non-relativistic ($\gamma=2$ dashed line) beam. (RF Deg on the scale of TM$_{010}$ period)

V. REFERENCES