MAX IV Design: Pushing the Envelope
Our outlook

• 3rd gen sources will be the SR workhorses for the foreseeable future
• Modern sources can be developed closer to the diffraction limit (New IDs, smaller emittance)
• Short-pulse (coherent as well as spontaneous) sources will complement rings and bring added value
Max IV strategy

3 and 1.5 GeV rings
+ 700 MeV MAX III

Coherent radiator, SPPS
3 GeV warm linac

• Linac for short pulses, rings for stability + mean brilliance
• 2 new rings + MAX III => broad spectral range, low cost
• Compact magnet technology => compact, exact lattice, small emittance and possibility to stack rings

M. Eriksson, PAC 07
New Ring Characteristics

Many small "damping-ring" magnets (integrated dipole/quadrupole/sextupole) => small emittance, small apertures, good dynamic aperture

Apertures small, but so are β and offmomentum functions functions => large admittance, energy acceptance

Apertures anyhow restricted by small gap IDs
Small apertures => special vac chambers

M. Eriksson, PAC 07
Ring main parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy (GeV)</td>
<td>3</td>
<td>1.5</td>
<td>0.7 (MAX III)</td>
</tr>
<tr>
<td>Circumference (m)</td>
<td>287</td>
<td>287</td>
<td>36</td>
</tr>
<tr>
<td>No of straight sections</td>
<td>12</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Straight sect length (m)</td>
<td>4.6</td>
<td>4.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Circulating current (A)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Emittance (nmrad)</td>
<td>0.86*</td>
<td>0.34</td>
<td>13</td>
</tr>
<tr>
<td>RF (MHz)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Quadrupole bore radius (mm)</td>
<td>12</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Dipole full gap (mm)</td>
<td>24</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Photon energy (und)</td>
<td>5eV-40 keV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Including 2 damping wigglers
Linear Lattice

- Multiple Bend Achromat
- High gradient in the dipole magnet

\[g \sim 10 \text{ T/m} \]
\[\varepsilon \sim \gamma^2/N^3 \]
Magnet technology (MAX III)

M. Eriksson, PAC 07
Matching Cell Dipole with Soft End

The synchrotron radiation power hitting the cold bores is restricted by the introduction of soft end magnet preceding the SC ID.

$\text{SR Power } \sim \frac{1}{\rho}$

M. Eriksson, PAC 07
Magnet parameters, New Rings

<table>
<thead>
<tr>
<th></th>
<th>Dipole</th>
<th>Quad</th>
<th>Sext</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (m)</td>
<td>0.9</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>Dipole field (T)</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gradient (T/m)</td>
<td>-9.3</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>Sextupol (T/m^2)</td>
<td>0</td>
<td>744</td>
<td>2000</td>
</tr>
<tr>
<td>Octupole (T/m^3)</td>
<td>0</td>
<td>5004</td>
<td>0</td>
</tr>
</tbody>
</table>

M. Eriksson, PAC 07
Work in progress:

Dipole ends with strong roll-off \Rightarrow

- No discrete sextupoles needed

- Lower dipol end fields, emittance reduction to 0.6 nm rad

M. Eriksson, PAC 07
Impact of Octupole field

Sext: ON & Oct: OFF

Sext: ON & Oct: ON

M. Eriksson, PAC 07
Effect of ID’s

<table>
<thead>
<tr>
<th></th>
<th>K-value</th>
<th>λ (mm)</th>
<th>No. of Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Undulator</td>
<td>2.2</td>
<td>14</td>
<td>200</td>
</tr>
<tr>
<td>SC Wiggler</td>
<td>20</td>
<td>60</td>
<td>35</td>
</tr>
</tbody>
</table>

BetaX = 7 m
BetaY = 1.8 m

BARE LATTICE

6 UNDULATORS & 2 WIGGLERS

M. Eriksson, PAC 07
Dynamic Aperture for off-momentum particles

BetaX = 7m
BetaY = 1.8m

M. Eriksson, PAC 07
Injection aperture needed

- 2 mm Lambertson septum (effective thickness)
- $\sigma_{\text{inj}} < 0.1 \text{ mm}$
- $\sigma_{\text{stored}} < 0.1 \text{ mm}$

Injection aperture $\leq 3 \text{ mm}$
The minimum admittance needed is defined by elastic scattering and injection.

<table>
<thead>
<tr>
<th>At the middle of SS.</th>
<th>Stable</th>
<th>Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 GeV</td>
<td>Horizontal</td>
<td>57.14×10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>55.55×10⁻⁶</td>
</tr>
<tr>
<td>1.5 GeV</td>
<td>Horizontal</td>
<td>57.14×10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>55.55×10⁻⁶</td>
</tr>
</tbody>
</table>
NEG-coated test dipole vac chamber (in MAX II)
Brilliance for EPUs on MAX IV

- 1.98 m long 69.1 mm period EPU with 57 poles on the 0.7 GeV ring
- 4 m long EPU with 41 mm period and 193 poles on the 1.5 GeV ring
- 4 m long EPU with 35 mm period and 226 poles on the 3 GeV ring.

M. Eriksson, PAC 07
Beam 1/e lifetime (h) @ 0.5 A
& 100 MHz +5th harmonic Landau Cavity

<table>
<thead>
<tr>
<th>Process</th>
<th>3 GeV</th>
<th>1.5 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touschek</td>
<td>10.5</td>
<td>89</td>
</tr>
<tr>
<td>El scattering</td>
<td>71.5</td>
<td>132</td>
</tr>
<tr>
<td>Bremsstrahlung</td>
<td>64.6</td>
<td>60.8</td>
</tr>
<tr>
<td>Total</td>
<td>8.4</td>
<td>24.5</td>
</tr>
</tbody>
</table>

M. Eriksson, PAC 07
Linac Injector

• 17 stations, 200 MeV each (Redundancy)
• Duty-factor=0.001 + Variable pulse length=> 220 Hz ≤ Rep rate ≤ 1 kHz
• Solid state modulators: Variable pulse length, high stability, low EM noise
• Electron source: according to SCSS
• SPPS in phase 1
• FEL driver in phase 2

M. Eriksson, PAC 07
Linac Module (17 of them)

1 35 MW klystron
1 Pair of SLED cavities
2 pcs 5 m linac structures

20 MV/m max gradient
Max dutyfactor 0.001
Solid state modulators
=>variable pulse length

M. Eriksson, PAC 07
<table>
<thead>
<tr>
<th>RF pulse length (μs)</th>
<th>Rape rate (Hz)</th>
<th>Max energy (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 (SLED)</td>
<td>220</td>
<td>3.4</td>
</tr>
<tr>
<td>3.0 (SLED)</td>
<td>330</td>
<td>3.0</td>
</tr>
<tr>
<td>1.0 (no SLED)</td>
<td>1000</td>
<td>1.9 (FEL)</td>
</tr>
</tbody>
</table>

3.4 MW from the wall

M. Eriksson, PAC 07
MAX IV Linac

3 GeV
1 nC Charge
100 fs bunch length
0.1 % $\Delta E/E$

Wiggler
Length 10 m
$PL = 5$ cm
Field = 2 T

Flux density / pulse for 10 keV photons 30 m from source

M. Eriksson, PAC 07
MAX IV Linac

3 GeV
1 nC Charge
100 fs bunch length
0.1 % \(\Delta E/E \)
3\times10^{-10} \text{ Emittance}

Undulator
Length 10 m
PL = 1.9 cm
K = 0.5 - 2.2

Peak Brill. = 1.1\times10^{26}

Total flux of photons / pulse through slits 1\times1 mm^2 30 m from source

![Graph showing peak brilliance vs. photon energy](image-url)

M. Eriksson, PAC 07
Thanks for your attention!
Injection rates

- 5 h life-time, 1% beam current variation => 3 minutes between injections
- Stored charge = 0.5 μC => 5 nC at each injection
- Fill 5 consecutive bunches with 1 nC in each
Legend

• 2002: Starting looking at “damping ring” lattices.
• 2004: CDR application awarded (Wallenberg Foundation).
• Nov 2005: Machine evaluated by the Swedish Research Council (VR).
• Dec 2006: Scientific Case evaluated by VR. (Phase 1).
• 2007: VR funds Detailed Design Study.
• June 2007: Letter from VR to Dep of Education: VR recommends the MAX IV project warmly and recommends the Department to find ways to finance MAX IV. (Phase 1).

For ev questions

M. Eriksson, PAC 07
Damping RW Instability

- Small gap IDs introduce high deflecting RW impedance($1/b^3$).

- Slightly positive chromaticity shifts the beam spectrum toward positive frequencies which acts damping.

Vertical damping time = 4.515 msec

100 MHz vs 100 MHz+5th harmonic cav.

500 MHz vs 500 MHz+3rd harmonic cav.

Chromatic Freq. $\omega_z = 8.8\text{GHz}$

with

$\xi_v = +1$

M. Eriksson, PAC 07
100 MHz RF system

- Five RF generator stations
- Each station consists of two cavities and two 60 kW tetrode amplifiers
- The RF power from the two amplifiers are combined in a switch-less hybrid combiner
- A 3db hybrid divides the power to the cavities
100 MHz cavity

E-field lines of the high order mode at 456 MHz

M. Eriksson, PAC 07