Fokker-Planck analysis of transverse collective instabilities in electron storage rings

Ryan Lindberg
Argonne National Lab

North American Particle Accelerator Conference
Tuesday, October 11, 2016
Introduction

- Single bunch transverse instabilities typically limit the current in high energy electron storage rings
- Emission of synchrotron radiation affects the instability threshold
Introduction

- Single bunch transverse instabilities typically limit the current in high energy electron storage rings
- Emission of synchrotron radiation affects the instability threshold
 - Leads to energy loss (damping) in all planes and diffusion of trajectories in phase space, so that the electron distribution function obeys a Fokker-Planck equation
 - These dissipative effects typically dominate those associated with Landau damping in high energy electron storage rings
Introduction

- Single bunch transverse instabilities typically limit the current in high energy electron storage rings
- Emission of synchrotron radiation affects the instability threshold
 - Leads to energy loss (damping) in all planes and diffusion of trajectories in phase space, so that the electron distribution function obeys a Fokker-Planck equation
 - These dissipative effects typically dominate those associated with Landau damping in high energy electron storage rings
- First analysis of single bunch instabilities using the Fokker-Planck equation was made by T. Suzuki†, who focused on the zero-chromaticity limit and the traditional transverse mode coupling instability (TMCI)

Introduction

- Single bunch transverse instabilities typically limit the current in high energy electron storage rings
- Emission of synchrotron radiation affects the instability threshold
 - Leads to energy loss (damping) in all planes and diffusion of trajectories in phase space, so that the electron distribution function obeys a Fokker-Planck equation
 - These dissipative effects typically dominate those associated with Landau damping in high energy electron storage rings
- First analysis of single bunch instabilities using the Fokker-Planck equation was made by T. Suzuki†, who focused on the zero-chromaticity limit and the traditional transverse mode coupling instability (TMCI)
 - Found that the Fokker-Planck dynamics implies that higher-order modes are damped more strongly
 - Since TMCI describes the merger of two low-order modes, the Fokker-Planck analysis makes a relatively small effect on the predicted instability threshold when $\xi = 0$
 - At large chromaticity we find that stability is dictated by high order modes, and the damping and diffusion of the Fokker-Planck equation increases the predicted stable current

Introduction

- Single bunch transverse instabilities typically limit the current in high energy electron storage rings
- Emission of synchrotron radiation affects the instability threshold
 - Leads to energy loss (damping) in all planes and diffusion of trajectories in phase space, so that the electron distribution function obeys a Fokker-Planck equation
 - These dissipative effects typically dominate those associated with Landau damping in high energy electron storage rings
- First analysis of single bunch instabilities using the Fokker-Planck equation was made by T. Suzuki†, who focused on the zero-chromaticity limit and the traditional transverse mode coupling instability (TMCI)
 - Found that the Fokker-Planck dynamics implies that higher-order modes are damped more strongly
 - Since TMCI describes the merger of two low-order modes, the Fokker-Planck analysis makes a relatively small effect on the predicted instability threshold when $\xi = 0$
 - At large chromaticity we find that stability is dictated by high order modes, and the damping and diffusion of the Fokker-Planck equation increases the predicted stable current
- We have simplified Suzuki’s results, and applied them to “large” chromaticity

Overview of the Fokker-Planck analysis

\[
\frac{\partial F}{\partial s} + \{F, H\} = \frac{2}{c \tau_z} \left[\sigma_0^2 \frac{\partial^2 F}{\partial p_z^2} + p_z \frac{\partial F}{\partial p_z} + F \right] + \frac{2}{c \tau_x} \left[\varepsilon_0 \frac{\partial^2 F}{\partial J^2} + \frac{\varepsilon_0}{4J} \frac{\partial^2 F}{\partial \Psi^2} + (\varepsilon_0 + J) \frac{\partial F}{\partial J} + F \right]
\]
Overview of the Fokker-Planck analysis

Hamiltonian part:
linear (synchrotron + betatron) motion,
chromatic nonlinearity, and transverse wakefields

\[
\frac{\partial F}{\partial s} + \{F, \mathcal{H}\} = \frac{2}{c\tau_z} \left[\sigma_0^2 \frac{\partial^2 F}{\partial p_z^2} + p_z \frac{\partial F}{\partial p_z} + F \right] + \frac{2}{c\tau_x} \left[\varepsilon_0 J \frac{\partial^2 F}{\partial J^2} + \frac{\varepsilon_0}{4J} \frac{\partial^2 F}{\partial \Psi^2} + (\varepsilon_0 + J) \frac{\partial F}{\partial J} + F \right]
\]
Overview of the Fokker-Planck analysis

Hamiltonian part:
linear (synchrotron + betatron) motion,
chromatic nonlinearity, and transverse wakefields

\[\frac{\partial F}{\partial s} + \{F, \mathcal{H}\} = \frac{2}{c\tau_z} \left[\sigma_z^2 \frac{\partial^2 F}{\partial p_z^2} + p_z \frac{\partial F}{\partial p_z} + F \right] + \frac{2}{c\tau_x} \left[\varepsilon_0 J \frac{\partial^2 F}{\partial J^2} + \frac{\varepsilon_0}{4J} \frac{\partial^2 F}{\partial \psi^2} + (\varepsilon_0 + J) \frac{\partial F}{\partial J} + F \right] \]

Dissipative (Fokker-Planck) part:
Damping and diffusion due to the stochastic emission of synchrotron radiation
Overview of the Fokker-Planck analysis

Hamiltonian part:
linear (synchrotron + betatron) motion,
chromatic nonlinearity, and transverse wakefields

\[
\frac{\partial F}{\partial s} + \{F, \mathcal{H}\} = \frac{2}{c \tau_z} \left[\sigma_\delta^2 \frac{\partial^2 F}{\partial p_z^2} + p_z \frac{\partial F}{\partial p_z} + F \right] + \frac{2}{c \tau_x} \left[\frac{\varepsilon_0}{\mathcal{J}} \frac{\partial^2 F}{\partial \mathcal{J}^2} + \frac{\varepsilon_0}{4 \mathcal{J} \partial \Psi^2} + \left(\varepsilon_0 + \mathcal{J} \right) \frac{\partial F}{\partial \mathcal{J}} + F \right]
\]

Dissipative (Fokker-Planck) part:
Damping and diffusion due to the stochastic emission of synchrotron radiation

Longitudinal damping time
Energy spread
Overview of the Fokker-Planck analysis

Hamiltonian part:
linear (synchrotron + betatron) motion,
chromatic nonlinearity, and transverse wakefields

\[
\frac{\partial F}{\partial s} + \{F, \mathcal{H}\} = \frac{2}{c \tau_z} \left[\sigma_z^2 \frac{\partial^2 F}{\partial p_z^2} + p_z \frac{\partial F}{\partial p_z} + F \right] + \frac{2}{c \tau_x} \left[\varepsilon_0 \mathcal{J} \frac{\partial^2 F}{\partial \mathcal{J}^2} + \frac{\varepsilon_0}{4 \mathcal{J}} \frac{\partial^2 F}{\partial \psi^2} + (\varepsilon_0 + \mathcal{J}) \frac{\partial F}{\partial \mathcal{J}} + F \right]
\]

- Longitudinal damping time
- Energy spread
- Transverse damping time
- Natural emittance

Dissipative (Fokker-Planck) part:
Damping and diffusion due to the
stochastic emission of synchrotron radiation
Overview of the Fokker-Planck analysis

Hamiltonian part:
linear (synchrotron + betatron) motion, chromatic nonlinearity, and transverse wakefields

\[\frac{\partial F}{\partial s} + \{F, \mathcal{H}\} = \frac{2}{c\tau_z} \left[\sigma^2 \frac{\partial^2 F}{\partial p^2_z} + p_z \frac{\partial F}{\partial p_z} + F \right] + \frac{2}{c\tau_x} \left[\varepsilon_0 \frac{\partial^2 F}{\partial \mathcal{J}^2} + \frac{\varepsilon_0}{4} \frac{\partial^2 F}{\partial \Psi^2} + (\varepsilon_0 + \mathcal{J}) \frac{\partial F}{\partial \mathcal{J}} + F \right] \]

Dissipative (Fokker-Planck) part:
Damping and diffusion due to the stochastic emission of synchrotron radiation

1. Linearize for perturbations about equilibrium

\[F(z, p_z, \Psi, \mathcal{J}; s) = f_0(\mathcal{J})g_0(\mathcal{H}_z) + f_1(\Psi, \mathcal{J}; s)g_1(z, p_z; s) \]

Distribution function
Equilibrium
Perturbation
Overview of the Fokker-Planck analysis

Hamiltonian part:
linear (synchrotron + betatron) motion, chromatic nonlinearity, and transverse wakefields

\[\frac{\partial F}{\partial s} + \{F, \mathcal{H}\} = \frac{2}{c\tau_z} \left[\sigma_\delta^2 \frac{\partial^2 F}{\partial p_z^2} + p_z \frac{\partial F}{\partial p_z} + F \right] + \frac{2}{c\tau_x} \left[\varepsilon_0 \mathcal{J} \frac{\partial^2 F}{\partial \mathcal{J}^2} + \frac{\varepsilon_0}{4\mathcal{J}} \frac{\partial^2 F}{\partial \Psi^2} + (\varepsilon_0 + \mathcal{J}) \frac{\partial F}{\partial \mathcal{J}} + F \right] \]

Longitudinal damping time \(\tau_z \)
Energy spread \(\sigma_\delta \)
Transverse damping time \(\tau_x \)
Natural emittance

1. Linearize for perturbations about equilibrium

\[F(z, p_z, \Psi, \mathcal{J}; s) = f_0(\mathcal{J})g_0(\mathcal{H}_z) + f_1(\Psi, \mathcal{J}; s)g_1(z, p_z; s) \]

Distribution function
Equilibrium
Perturbation

2. Assume that the transverse motion is described by dipole oscillations\(^\dagger\) at the (chromaticity-corrected) betatron frequency

\[\mathcal{J} = \mathcal{D}(s) \]

Overview of the Fokker-Planck analysis

Hamiltonian part:
linear (synchrotron + betatron) motion, chromatic nonlinearity, and transverse wakefields

Dissipative (Fokker-Planck) part:
Damping and diffusion due to the stochastic emission of synchrotron radiation

\[\frac{\partial F}{\partial s} + \{F, H\} = \frac{2}{c \tau_z} \left[\sigma_0^2 \frac{\partial^2 F}{\partial p_z^2} + p_z \frac{\partial F}{\partial p_z} + F \right] + \frac{2}{c \tau_x} \left[\varepsilon_0 \mathcal{J} \frac{\partial^2 F}{\partial \mathcal{J}^2} + \frac{\varepsilon_0}{4} \frac{\partial^2 F}{\partial \Psi^2} + \left(\varepsilon_0 + \mathcal{J} \right) \frac{\partial F}{\partial \mathcal{J}} + F \right] \]

1. Linearize for perturbations about equilibrium

\[F(z, p_z, \Psi, \mathcal{J}; s) = f_0(\mathcal{J})g_0(H_z) + f_1(\Psi, \mathcal{J}; s)g_1(z, p_z; s) \]

2. Assume that the transverse motion is described by dipole oscillations at the (chromaticity-corrected) betatron frequency

3. Expand longitudinal perturbation as a sum of linear modes in longitudinal action and angle

Overview of the Fokker-Planck analysis

Hamiltonian part:
linear (synchrotron + betatron) motion, chromatic nonlinearity, and transverse wakefields

\[
\frac{\partial F}{\partial s} + \{F, \mathcal{H}\} = \frac{2}{c \tau_z} \left[\sigma_0^2 \frac{\partial^2 F}{\partial p_z^2} + p_z \frac{\partial F}{\partial p_z} + F \right] + \frac{2}{c \tau_x} \left[\varepsilon_0 \mathcal{J} \frac{\partial^2 F}{\partial \mathcal{J}^2} + \frac{\varepsilon_0}{4 \mathcal{J}} \frac{\partial^2 F}{\partial \Psi^2} + (\varepsilon_0 + \mathcal{J}) \frac{\partial F}{\partial \mathcal{J}} + F \right]
\]

Dissipative (Fokker-Planck) part:
Damping and diffusion due to the stochastic emission of synchrotron radiation

1. Linearize for perturbations about equilibrium

\[
F(z, p_z, \Psi, \mathcal{J}; s) = f_0(\mathcal{J})g_0(\mathcal{H}_z) + f_1(\Psi, \mathcal{J}; s)g_1(z, p_z; s)
\]

2. Assume that the transverse motion is described by dipole oscillations\(^\dagger\) at the (chromaticity-corrected) betatron frequency

3. Expand longitudinal perturbation as a sum of linear modes in longitudinal action and angle

4. Solve eigenvalue problem to determine normal modes and complex frequencies as a function of current and chromaticity

Linearized Fokker-Planck equation

Assumptions for distribution function imply

\[
F(z, p_z, \Psi, J; s) = f_0(J)g_0(H_z) + f_1(\Psi, J; s)g_1(z, p_z; s)
\]
Linearized Fokker-Planck equation

- Assumptions for distribution function imply

\[
F(z, p_z, \Psi, \mathcal{J}; s) = f_0(\mathcal{J})g_0(\mathcal{H}_z) + f_1(\Psi, \mathcal{J}; s)g_1(z, p_z; s)
\]

Distribution function

Equilibrium

Perturbation

\[
= \frac{e^{-\mathcal{J}/\varepsilon_0} e^{-\mathcal{I}/\langle \mathcal{I} \rangle}}{2\pi \varepsilon_0 \langle \mathcal{I} \rangle} - \mathcal{D}(s) \sqrt{\frac{1}{2} \mathcal{J} f_0'(\mathcal{J})} e^{i(\Psi + k\xi z)} e^{-i\omega_\beta s/c} e^{-i\Omega s/c} g_1(z, p_z)
\]

Transverse betatron oscillation in action-angle coordinates \((\mathcal{J}, \Psi)\)

Linearized Fokker-Planck equation

Assumptions for distribution function imply

\[
F(z, p_z, \Psi, J; s) = f_0(J)g_0(H_z) + f_1(\Psi, J; s)g_1(z, p_z; s)
\]

Equilibrium

\[
\frac{e^{-\mathcal{J}/\varepsilon_0} e^{-\mathcal{I}/\langle \mathcal{I} \rangle}}{2\pi \varepsilon_0} \frac{1}{2\pi \langle \mathcal{I} \rangle}
\]

Perturbation

\[
\mathcal{D}(s) \sqrt{\frac{1}{2} J f_0'(J)} e^{i(\Psi + k_{\xi}z)} e^{-i\omega_s / c} e^{-i\Omega / c} g_1(z, p_z)
\]

Transverse betatron oscillation in action-angle coordinates \((J, \Psi)\)

Head-tail phase, \(k_{\xi} = \frac{\omega_0 \xi_x}{\alpha_c c}\)

Linearized Fokker-Planck equation

Assumptions for distribution function imply

\[
F(z, p_z, \Psi, J; s) = f_0(J)g_0(H_z) + f_1(\Psi, J; s)g_1(z, p_z; s)
\]

- Distribution function
- Equilibrium
- Perturbation

\[
F = \frac{e^{-J/e_0}}{2\pi e_0} \frac{e^{-I/\langle I \rangle}}{2\pi \langle I \rangle} \mathcal{D}(s) \sqrt{\frac{1}{2} J f_0'(J)} e^{i(\Psi + k_\xi z)} e^{-i\omega_\beta s/c} e^{-i\Omega s/c} g_1(z, p_z)
\]

- Transverse betatron oscillation in action-angle coordinates \((J, \Psi)\)
- Complex mode frequency
- Longitudinal perturbation
- Head-tail phase, \(k_\xi = \frac{\omega_0 \xi_x}{\alpha_c c}\)

Linearized Fokker-Planck equation

Assumptions for distribution function imply

\[F(z, p_z, \Psi, \mathcal{J}; s) = f_0(\mathcal{J})g_0(\mathcal{H}_z) + f_1(\Psi, \mathcal{J}; s)g_1(z, p_z; s) \]

\[= \frac{e^{-\mathcal{J}/\varepsilon_0}}{2\pi \varepsilon_0} \frac{e^{-\mathcal{J}/\langle I \rangle}}{2\pi \langle I \rangle} D(s) \sqrt{\frac{1}{2} \mathcal{J} f_0'(\mathcal{J})} e^{i(\Psi + k_z s)} e^{-i\omega_\beta s/c} e^{-i\Omega s/c} g_1(z, p_z) \]

Transverse betatron oscillation in action-angle coordinates \((\mathcal{J}, \Psi)\)

Head-tail phase, \(k_z \equiv \frac{\omega_0 \xi_x}{\alpha_c c}\)

Linearized Fokker-Planck equation for longitudinal perturbation \(g_1\) becomes

\[\frac{\Omega + i/\tau_x}{c} g_1(z, p_z) + i\{g_1, \mathcal{H}_z\} - \frac{2\pi I g_0(\mathcal{I})}{\gamma c I_A Z_0} \int d\hat{p}_z d\hat{z} \beta_x W_D(z - \hat{z}) e^{ik_z(\hat{z} - z)} g_1(\hat{z}, \hat{p}_z) = \frac{2i}{c\tau_z} \left[\sigma_0^2 \frac{\partial^2 g_1}{\partial p_z^2} + p_z \frac{\partial g_1}{\partial p_z} + g_1 \right] \]

Linearized Fokker-Planck equation

- Assumptions for distribution function imply

\[
F(z, p_z, \Psi, \mathcal{J}; s) = f_0(\mathcal{J})g_0(\mathcal{H}_z) + f_1(\Psi, \mathcal{J}; s)g_1(z, p_z; s)
\]

- Linearized Fokker-Planck equation for longitudinal perturbation \(g_1\) becomes

\[
\frac{i}{\tau_x} g_1(z, p_z) + i\left\langle g_1, \mathcal{H}_z \right\rangle \frac{2\pi I g_0(\mathcal{I})}{\gamma c I_A Z_0} \int d\hat{p}_z d\hat{\xi} \beta_x W_D(z - \hat{\xi}) e^{ik\xi(z - \hat{\xi})} g_1(\hat{\xi}, \hat{p}_z) \]

\[
\frac{2i}{c\tau_z} \left[\sigma_0^2 \frac{\partial^2 g_1}{\partial p_z^2} + p_z \frac{\partial g_1}{\partial p_z} + g_1 \right]
\]

- Head-tail phase, \(k_\xi \equiv \frac{\omega_0 \xi_x}{\alpha c c}\)

Linearized Fokker-Planck equation

- Assumptions for distribution function imply

\[F(z, p_z, \Psi, J; s) = f_0(J)g_0(H_z) + f_1(\Psi, J; s)g_1(z, p_z; s) \]

Distribution function
Equilibrium
Perturbation

\[\mathcal{D}(s) \sqrt{\frac{1}{2} \mathcal{J} f'_0(J)} e^{i(\Psi + k\xi z)} e^{-i\omega_\beta s/c} \]

Transverse betatron oscillation in action-angle coordinates \((J, \Psi)\)

Longitudinal perturbation
Complex mode frequency
Head-tail phase, \(k_\xi = \frac{\omega_0 \xi_x}{\alpha_c c}\)

- Linearized Fokker-Planck equation for longitudinal perturbation \(g_1\) becomes

\[\frac{\Omega + i/\tau_x}{c} g_1(z, p_z) + i\{g_1, H_z\} = \int d\hat{z} d\hat{z} \beta_x W_D(z - \hat{z}) e^{ik\xi(z - \hat{z})} g_1(\hat{z}, \hat{p}_z) \]

Synchrotron motion
Contribution of dipolar wakefield
Fokker-Planck dynamics (damping and diffusion)

Imaginary part of \(\Omega\) determines stability of perturbation

Matrix theory of transverse collective instabilities

The linear problem can be solved by expanding the perturbation in terms of orthogonal modes (Sacherer’s method)

Scaled action \(I / \langle I \rangle \)

\[
g_1(\Phi, r) = \sum_{q,n} a_q^n g_q^n(r) \frac{e^{-r}}{2\pi} e^{in\Phi} = \sum_{q=0}^{\infty} \sum_{n=-q}^{\infty} a_q^n \frac{r^{n/2} L_q^n(r)}{\sqrt{(q+n)!/q!}} \frac{e^{-r}}{2\pi} e^{in\Phi}
\]

Gauss-Laguerre modes

Matrix theory of transverse collective instabilities

The linear problem can be solved by expanding the perturbation in terms of orthogonal modes (Sacherer’s method)

Scaled action \(\mathcal{I}/\langle \mathcal{I} \rangle \)

\[
g_1(\Phi, r) = \sum_{q,n} a_q^n g^n_q(r) \frac{e^{-r}}{2\pi} e^{in\Phi} = \sum_{q=0}^{\infty} \sum_{n=-q}^{\infty} a_q^n \frac{r^{n/2} L_n^q(r)}{\sqrt{(q + n)!/q!}} \frac{e^{-r}}{2\pi} e^{in\Phi}
\]

So that the linear problem reduces to the matrix equation

Coupling matrix associated with dipolar impedance

\[
\left[\frac{\Omega - i m \omega_s}{c} + \frac{i}{c T_x} + \frac{i(2p + m)}{c T_z} \right] a_p^m + \frac{2\pi I}{\gamma \mathcal{I}_A} \int dk \sum_{n,q} D_{p,q}^{m,n}(k + k_\xi) a_q^n = \frac{i}{2c T_z} \left(R_p^m a_{p+1}^m - T_p^m a_{p-1}^m \right)
\]

Matrix theory of transverse collective instabilities

The linear problem can be solved by expanding the perturbation in terms of orthogonal modes (Sacherer’s method)

Scaled action $\mathcal{I}/\langle \mathcal{I} \rangle$

$$g_1(\Phi, r) = \sum_{q,n} a_q^n g_q^n(r) \frac{e^{-r}}{2\pi} e^{in\Phi} = \sum_{q=0}^{\infty} \sum_{n=-q}^{\infty} a_q^n \frac{r^{n/2} L_q^n(r)}{\sqrt{(q+n)!/q!}} \frac{e^{-r}}{2\pi} e^{in\Phi}$$

So that the linear problem reduces to the matrix equation

$$\begin{bmatrix} \Omega - i m \omega_s \\ \frac{i}{c\tau_x} + \frac{i(2p + m)}{c\tau_z} \end{bmatrix} a_p^m + \frac{2\pi i}{\gamma I_A} \int dk \sum_{n,q} D_{p,q}^{m,n}(k + k_\xi) a_q^n = \frac{i}{2c\tau_z} \left(R_p^m a_{p+1}^{m-2} + T_p^m a_{p-1}^{m+2} \right)$$

Matrix theory of transverse collective instabilities

The linear problem can be solved by expanding the perturbation in terms of orthogonal modes (Sacherer’s method)

Scaled action \(\mathcal{I}/\langle \mathcal{I} \rangle \)

\[
g_1(\Phi, r) = \sum_{q,n} a_q^n g_q^n(r) \frac{e^{-r}}{2\pi} e^{in\Phi} = \sum_{q=0}^{\infty} \sum_{n=-q}^{\infty} a_q^n \frac{r^{n/2} L_q(r)}{\sqrt{(q+n)!/q!}} \frac{e^{-r}}{2\pi} e^{in\Phi}
\]

So that the linear problem reduces to the matrix equation

\[
\begin{bmatrix}
\Omega - m\omega_s \\
c \\
\end{bmatrix}
+ \frac{i}{cT_x} + \frac{i(2p+m)}{cT_z}
\] \(a_p^m \) + \(\frac{2\pi I}{\gamma I_A} \int dk \sum_{n,q} D_{p,q}^{m,n} (k + k_\xi) a_q^n = \frac{i}{2cT_z} \left(R_p^m a_{p+1}^{m-2} + T_p^m a_{p-1}^{m+2} \right)
\]

Mode-dependent synchrotron damping

Gauss-Laguerre modes

Coupling matrix associated with dipolar impedance

Diffusive mode coupling terms

Mode coefficient of (azimuthal, radial) mode number \((m,p)\), etc.

Matrix theory of transverse collective instabilities

The linear problem can be solved by expanding the perturbation in terms of orthogonal modes (Sacherer’s method)

Scaled action $I/\langle I \rangle$

$$g_1(\Phi, r) = \sum_{q,n} a_q^n g_q^n(r) \frac{e^{-r}}{2\pi} e^{in\Phi} = \sum_{q=0}^{\infty} \sum_{n=-q}^{\infty} a_q^n \frac{r^{n/2} L_q(r)}{\sqrt{(q+n)!/q!}} \frac{e^{-r}}{2\pi} e^{in\Phi}$$

So that the linear problem reduces to the matrix equation

$$\begin{bmatrix} \frac{\Omega - m\omega_s}{c} + i \frac{(2p + m)}{cT_x} \\ \frac{2\pi I}{\gamma I_A} \int dk \sum_{n,q} D_{p,q}^{m,n}(k + k_\xi) a_q^n \end{bmatrix} + \frac{i}{2cT_z} \left(R_p^m a_{p+1}^{m-2} + T_p^m a_{p-1}^{m+2} \right)$$

This is an eigenvalue problem: truncating and numerically solving it gives normal modes that are linear superpositions of the a_p^m, each with a complex frequency Ω.

If Ω has a positive imaginary part then the system is unstable

Physical picture of Fokker-Planck dissipation

- In the transverse plane we assumed simple dipole motion and obtained damping at the transverse damping rate
- In the longitudinal plane the effective damping depends on the mode number
Physical picture of Fokker-Planck dissipation

- In the transverse plane we assumed simple dipole motion and obtained damping at the transverse damping rate
- In the longitudinal plane the effective damping depends on the mode number
- The diffusion time t_{diff} for a perturbation with characteristic scale length Δp_z is

$$t_{\text{diff}} \sim \left(\frac{\Delta p_z}{\sigma \delta} \right)^2 \tau_z$$
Physical picture of Fokker-Planck dissipation

- In the transverse plane we assumed simple dipole motion and obtained damping at the transverse damping rate.
- In the longitudinal plane the effective damping depends on the mode number.
- The diffusion time \(t_{\text{diff}} \) for a perturbation with characteristic scale length \(\Delta p_z \) is

\[
t_{\text{diff}} \sim \left(\frac{\Delta p_z}{\sigma_\delta} \right)^2 \tau_z \sim \frac{1}{2p + m} \tau_z
\]
Physical picture of Fokker-Planck dissipation

- In the transverse plane we assumed simple dipole motion and obtained damping at the transverse damping rate.
- In the longitudinal plane the effective damping depends on the mode number.
- The diffusion time t_{diff} for a perturbation with characteristic scale length Δp_z is

$$t_{\text{diff}} \sim \left(\frac{\Delta p_z}{\sigma \delta} \right)^2 \tau \sim \frac{1}{2p + m} \tau_z$$

Higher order modes are more strongly damped.
Physical picture of Fokker-Planck dissipation

- In the transverse plane we assumed simple dipole motion and obtained damping at the transverse damping rate.
- In the longitudinal plane the effective damping depends on the mode number.
- The diffusion time t_{diff} for a perturbation with characteristic scale length Δp_z is

$$t_{\text{diff}} \sim \left(\frac{\Delta p_z}{\sigma} \right)^2 \tau_z \sim \frac{1}{2p + m} \tau_z$$

Higher order modes are more strongly damped.

Increasing effective damping rate.

Δp_z: characteristic scale length, σ: standard deviation, τ_z: characteristic time scale, p: mode number, m: mode number in the longitudinal direction.
Physical picture of Fokker-Planck dissipation

- In the transverse plane we assumed simple dipole motion and obtained damping at the transverse damping rate.
- In the longitudinal plane the effective damping depends on the mode number.
- The diffusion time t_{diff} for a perturbation with characteristic scale length Δp_z is

$$t_{\text{diff}} \sim \left(\frac{\Delta p_z}{\sigma_\delta} \right)^2 \tau_z \sim \frac{1}{2p + m} \tau_z$$

- Diffusion also results in additional coupling between modes, but this is weak.
Application to APS-U 7-bend achromat lattice with resistive wall transverse impedance model

\[\beta_x, \beta_y, \eta_x \]

Parameters
(V_{rf} = 4.1 \text{ MV})

- \(\gamma = 6 \text{ GeV}/mc^2 \)
- \(\bar{C}_R = 1104 \text{ m} \)
- \(\alpha_c = 5.66 \times 10^{-5} \)
- \(\omega_s = 3271 \text{ Hz} \)
- \(\sigma_\delta = 0.0955 \% \)
- \(\tau_z = 14.06 \text{ ms} \)
- \(\varv_0 = 67 \text{ pm} \)
- \(\tau_x = 12.07 \text{ ms} \)

Application to APS-U 7-bend achromat lattice with resistive wall transverse impedance model

Second-order chromatic effects have been artificially set to zero in this study. (Can be included with a minor extension to the theory)

Also, we neglect the higher-harmonic rf cavity

Application to APS-U 7-bend achromat lattice with resistive wall transverse impedance model

Second-order chromatic effects have been artificially set to zero in this study. (Can be included with a minor extension to the theory)

Also, we neglect the higher-harmonic rf cavity

\[
\beta_x Z_D(k) = \eta_D \int ds \beta_x(s) \frac{\text{sgn}(k) - i}{\pi b(s)^3} \sqrt{\frac{Z_0 \rho(s)}{2 |k|}}
\]

round: \(\eta_D = 1 \)

flat: \(\eta_D = \frac{\pi^2}{24} \)

Mode coupling at zero chromaticity is very similar to that of Vlasov theory

In Vlasov picture the matrices are purely real at zero chromaticity, and two distinct real eigenvalues collide to become complex conjugates of each other.
Mode coupling is less clear for non-zero chromaticity $\xi = 0.75$
Mode coupling is less clear for non-zero chromaticity

\[\xi = 0 \]

\[\xi = 1.5 \]

Close to where 2-mode picture has only stable modes
Usual coupled-mode theory of two synchrotron modes describes physics at low chromaticity.
Usual coupled-mode theory of two synchrotron modes describes physics at low chromaticity.

\[V_{rf} = 4.1 \text{ MV} \]

\[V_{rf} = 8.2 \text{ MV} \]

BUT, two-mode theory has no unstable root if

\[\xi_x \frac{\omega_0 \sigma_z}{\alpha_{cc}} \gtrsim 0.7 \]
Instability threshold is well predicted by the Fokker-Planck theory by including many modes.
Instability threshold is well predicted by the Fokker-Planck theory by including many modes.

Landau damping is unimportant for these parameters.

Artificially setting the nonlinear tune shift with amplitude to zero has essentially no effect in the simulation predictions.
Instability threshold is well predicted by the Fokker-Planck theory by including many modes.

Landau damping is unimportant for these parameters.

Artificially setting the nonlinear tune shift with amplitude to zero has essentially no effect in the simulation predictions.

Vlasov theory underestimates I_{thresh} by a factor of 2 at high chromaticity.
Visualization of the unstable mode at $\xi = 5$

Theory
Visualization of the unstable mode at $\xi = 5$

Theory
Comprised mostly of modes with $m = -4$
Visualization of the unstable mode at $\xi = 5$

Theory
Comprised mostly of modes with $m = -4$

elegant simulation
Visualization of the unstable mode at $\xi = 5$

Theory
Comprised mostly of modes with $m = -4$

elegant simulation
Physics of collective transverse instability

Region where 2-mode theory is valid for $V_{rf} = 4.1$ MV

Region where 2-mode theory is valid for $V_{rf} = 8.2$ MV
Physics of collective transverse instability

At very low chromaticity, higher rf voltage gives larger stable current:

Larger rf \rightarrow Larger synchrotron frequency

\rightarrow Larger required frequency shift to merge modes

[Classic transverse mode coupling instability (TMCI)]
Physics of collective transverse instability

At very low chromaticity, higher rf voltage gives larger stable current:
- Larger rf → Larger synchrotron frequency
- Larger required frequency shift to merge modes
[Classic transverse mode coupling instability (TMCI)]

For most values of chromaticity, lowering the rf increases the threshold current:
- Smaller rf → Longer bunch
- Lower peak current + larger chromatic frequency shift of $Z_{\text{transverse}}$

Unstable eigenmode is comprised of many Gaussian-Laguerre basis modes, and higher-order modes have larger Fokker-Planck damping.

Region where 2-mode theory is valid for $V_{\text{rf}} = 4.1$ MV

Region where 2-mode theory is valid for $V_{\text{rf}} = 8.2$ MV
Physics of collective transverse instability

At very low chromaticity, higher rf voltage gives larger stable current:

- Larger rf → Larger synchrotron frequency
- Larger required frequency shift to merge modes

[Classic transverse mode coupling instability (TMCI)]

For most values of chromaticity, lowering the rf increases the threshold current:

- Smaller rf → Longer bunch
- Lower peak current + larger chromatic frequency shift of $Z_{\text{transverse}}$

Unstable eigenmode is comprised of many Gaussian-Laguerre basis modes, and higher-order modes have larger Fokker-Planck damping

We have also compared results for the “textbook” example of a constant wake function, finding qualitatively similar behavior
Conclusions & future work

- A Fokker-Planck analysis may be required to determine stability in storage rings with significant levels of synchrotron radiation when $\xi \neq 0$
- Damping and diffusion affects finer-scale perturbations more strongly, which results in larger effective damping rates for higher-order modes
- The Fokker-Planck predictions of the instability threshold and mode shape agree well with simulation results when we know the longitudinal potential
Conclusions & future work

- A Fokker-Planck analysis may be required to determine stability in storage rings with significant levels of synchrotron radiation when $\xi \neq 0$
- Damping and diffusion affects finer-scale perturbations more strongly, which results in larger effective damping rates for higher-order modes
- The Fokker-Planck predictions of the instability threshold and mode shape agree well with simulation results when we know the longitudinal potential
- We have extended this work to include quadrupolar wakefields, finding that this increases the predicted I_{thresh} by 10% – 40%
- We have found that these results can be extended to include potential well distortion if the effect is small
- We are in the process of extending this work to include the effects of 2nd order chromaticity, which we have found reduces the instability threshold for the APS-U
- Applying this formalism to include higher-harmonic rf and/or full effects of longitudinal impedance will be very challenging
Conclusions & future work

- A Fokker-Planck analysis may be required to determine stability in storage rings with significant levels of synchrotron radiation when $\xi \neq 0$
- Damping and diffusion affects finer-scale perturbations more strongly, which results in larger effective damping rates for higher-order modes
- The Fokker-Planck predictions of the instability threshold and mode shape agree well with simulation results when we know the longitudinal potential
- We have extended this work to include quadrupolar wakefields, finding that this increases the predicted I_{thresh} by 10% – 40%
- We have found that these results can be extended to include potential well distortion if the effect is small
- We are in the process of extending this work to include the effects of 2nd order chromaticity, which we have found reduces the instability threshold for the APS-U
- Applying this formalism to include higher-harmonic rf and/or full effects of longitudinal impedance will be very challenging

Thank you for your attention!