Simulated Measurements of Beam Cooling in Muon Ionization Cooling Experiment
Tanaz Angelina Mohayai*, Illinois Institute of Technology & Fermilab, USA
Pavel Snopok, Illinois Institute of Technology & Fermilab, USA
Chris Rogers, STFC Rutherford Appleton Laboratory, UK
David Neuffer, Fermilab, USA
for the MICE Collaboration

Abstract

The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization beam cooling:
- Muon beam is passed through an absorbing material to reduce its phase-space volume (emittance).
- Why cooled muon beams:
 - Neutrino Factory: for intense and pure neutrino beams.
 - Muon Colliders: for compact lepton colliders with energies of up to several TeV.
- The figure of merit for cooling: root-mean-square (RMS) emittance reduction.

Introduction

- How MICE demonstrates beam cooling:
 - Ensure muon beam purity using PID detectors (time-of-flight, Cherenkov, electron muon range).
 - Reconstruct muon transverse coordinates \(X_i = (x_i, p_{x_i}, y_i, p_{y_i})\) using the trackers.
 - Compute RMS emittance from transverse coordinates.
- BUT a different measure of cooling is needed because of the sensitivity of the RMS emittance to non-linear effects.

Kernel Density Estimation in MICE

- Kernel Density Estimation (KDE) technique: Well known in image processing.
- No assumptions are made about the distribution.
- How MICE demonstrates beam cooling using KDE:
 - Center a four dimensional Gaussian kernel function (weighting function shaped as multi-dimensional ellipse of variance \(h = h_f \sum\)) at each muon.
 - Estimate the density at an arbitrary point \(x = (x, p_x, y, p_y)\) by summing the contributions from all muons.
 \[f(x) = \frac{1}{n} \sum_{i=1}^{N} \exp \left(-\frac{1}{2h^2} (x - X_i)^T \Sigma^{-1} (x - X_i) \right) \]
- \(h\) and \(h_f\) are the bandwidth factor and parameter. \(\Sigma\) is the covariance matrix of the muon coordinates.
- \(h\) has a strong effect on the estimated density. Scott's rule of thumb was used here, \(h = \frac{3M^{-1/5}}{n^{2/9}}\).

Bandwidth Factor Effect

- Estimated density vs. \(x\) position plot for 500 muons.
- Scott's rule of thumb bandwidth parameter multiplied by a large factor oversmoothes the density.
- A smaller factor leads to a noisier density.

Simulation Results

- Preliminary density, volume and emittance evolution plots in the MICE Step IV channel:
 - The yellow curves represent a channel with no absorber.
 - The blue curves represent a channel with a 65 mm LiH absorber.
 - The evolution curve remains constant for an empty channel except at \(z=1.5\) m due to the turned off downstream Match 1 and Match 2 coils.

Conclusion

- Studied a MICE Step IV lattice with Match 2 and the in-operative Match 1 coil fields set to zero in the downstream Spectrometer Solenoids.
- Demonstrated cooling through phase-space density increase and phase-space volume decrease using KDE.

MICE

- The current configuration: MICE Step IV.

Before and after MICE photos: the cooling channel (left, 2015) enclosed by the partial return yoke (PRY) (right, 2016).

Work supported by DOE, INFN, STFC, DOE SCGSR under contract number DE‐AC05‐06OR23100, and IIT Irwin Fieldhouse Fellowship. We thank D. Kaplan and J. S. Berg for the valuable discussions.