PARAMETERIZATION OF HELICAL SUPERCONDUCTING UNDULATOR MAGNETIC FIELD*

S.H. Kim†, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

Using a scaling law, the magnetic fields of helical superconducting undulators (HSCUs) for a period range of 10 – 50 mm are parameterized from the field calculations of one reference HSCU with a period of 30 mm. The on-axis fields are calculated at the critical current densities of the NbTi and Nb3Sn superconducting coils at 4.2 K. The parametrized on-axis fields for the period range are expressed in terms of the period and inner radius of the helical coils. The corresponding critical current densities and coil maximum fields are also included. The parameterization procedures are described in detail and some field deviations are discussed.

INTRODUCTION

During the early phase of insertion device development, Halbach has provided the analytically derived on-axis field as a function of the pole gap and magnetic period for the use of pure permanent magnet blocks [1]. He also derived another on-axis field relation for the use of optimized samarium-cobalt alloy poles and magnet dimensions [2].

Using a wire of an infinitesimal cross section, the transverse field of a single helix is given by Smythe [3]. Kincaid has extended the field on the axis due to a pair of current carrying wires wound on a bifilar helix [4]. Assuming that the field pattern has a sinusoidal variation along the axis and no higher harmonics are present, Blewett and Chasman have derived the spiraling transverse field [5].

The first helical superconducting undulator (HSCU) with a period of 30 mm was constructed by Elias and Madey in 1979 for an early free-electron laser experiment [6]. In recent years, short period HSCUs are under development at the Advanced Photon Source, Argonne National Laboratory, and several other institutions.

The on-axis field \(B_0 \) for the helical undulator with specific coil dimensions is expressed as

\[
B_0 = \frac{2 \mu_0 j \lambda}{\pi} \sin\left(\frac{k}{2}\right) \left\{ K_0(kr_0) + K_1(kr_0) \right\} \frac{dr}{\lambda}. \tag{1}
\]

Here \(\mu_0 \) is the permeability in free space, \(j \) is the current in the coil pack on radius \(r_0 \), \(k = 2\pi/\lambda \) with \(\lambda \) as the undulator period along the z-axis, and \(K_0 \) and \(K_1 \) are modified Bessel functions [7]. The coil dimensions \(a \) and \(b \) are specified in Fig. 1.

Equation (1) suggests that when the undulator dimensions are scaled according to a period ratio and the \(j \lambda \) is kept as a constant, the on-axis field \(B_0 \) remains unchanged. The more important aspect is that the whole field distribution remains unchanged even with non-linear magnetic poles. The scaling law must hold also for other electromagnets [8]. The units used in this paper are: length (mm), current (kA), and magnetic field (T).

Figure 1: A model helical undulator: a double-helix steel coil is shown as magnetic poles on the outer surface of a beam chamber. In the empty space between the steel poles, helical coils of current densities, \(+j \) and \(-j \), are to be wound with \(r_0 \) as the inner radius of the coils, \(a \) and \(b \) as the coil dimensions.

THE SCALING LAW APPLICATION

As indicated in Eq. (1), when two undulator geometries are scaled, for example, 3:2, and the magnitude of the \(j \lambda \) is kept as a constant, the undulators will have the same field distribution. For the reference undulator (\(\lambda = 30, r_0 = 12 \)), the on-axis fields \(B_0 \) and the corresponding maximum field \(B_m \) in the superconducting (SC) coils in Fig. 2, along with the one that has been scaled down by a factor of 2/3 (\(\lambda = 20, r_0 = 8 \)).

Figure 2: On-axis fields \(B_0 \) and maximum fields \(B_m \) in the coils are plotted as a function of coil (engineering) current density \(J \) for the two undulators with periods of 30.0 and 20.0.
Figure 2 shows that, within the calculation errors, the field values, B_m and B_0, for $\lambda = 30$ at $J = 1.0$ and 2.0, for example, are the same as those for $\lambda = 20$ at $J = 1.5$ and 3.0, respectively. The fields with typical low-carbon steel poles were calculated using the Vector Fields Software [9].

As seen in Fig. 2, the steel poles are well saturated for $J > 0.5$ kA/mm2, the fields for the two undulator are written in Eqs. (2a) and (2b). Equation (2c) is to calculate the on-axis field at about 80% of the critical current density. Equation (3) is a period ratio with $\lambda_{ref} = 30$. With $\lambda = 20$, Eqs. (2) represent for the 20 undulator. The period λ could be chosen any value within the specified range including the λ_{ref}.

\[
B_m = (1.011 + 2.944J) \lambda \text{ratio}, \quad (2a)
\]
\[
B_0 @ J_c = (0.16159 + 0.55342J) \lambda \text{ratio}, \quad (2b)
\]
\[
B_0 @ 0.8J_c = (0.16159 + 0.55342*0.8J) \lambda \text{ratio}. \quad (2c)
\]

\[
\lambda \text{ratio} = \frac{\lambda}{\lambda_{ref}}. \quad (3)
\]

The current densities for the two SC coils at 4.2 K are based on the insulated wires at 5.0 T for the NbTi and at 12.0 T for the Nb$_3$Sn [10, 11]. The coil current densities J vs. B_m for the two SC coils are given by Eqs. (4a) and (4b) with the upper critical fields at 0 K: $B_{c1} = 10.6766$ T and $B_{c2} = 26.6547$ T.

\[
J(\text{NbTi}) = (14.8249 / B_m)(1 - B_m / B_{c1})(B_m / B_{c1})^{0.6}, \quad (4a)
\]
\[
J(\text{Nb}_3\text{Sn}) = 1.54226(B_{c2} / B_m)^{0.5}(1 - B_m / B_{c2})^2. \quad (4b)
\]

By using Eqs. (2a) and Eqs. (4), the J_c and B_m are calculated, and the corresponding B_0 may be calculated from Eqs. (2b) and (2c). By changing the period in Eq. (3), all the fields within the specified range of 10 – 50 mm can be calculated. It should be noted that when the period is changed for the calculations, the λr_0 ratio remains unchanged.

DEPENDENCE ON THE COIL RADIUS

The coil inner radius r_0 (12 mm) for the reference undulator is varied from 5 mm to 20 mm, and the calculated fields B_0 as a function of r_0 are plotted in Fig. 3. The exponential factor of the fields did not depend on the coil current densities of 1.5 ~ 3.5. For $J = 1.0$ and 0.5 the factors were increased only about 0.01% and 0.08%, respectively. The exponential variation was generalized into Eq. (5) to apply for the selected period range. It should be noted that when r_0 is less than 0.4 λ, $f(r_0, \lambda)$ increases exponentially.

\[
f(r_0, \lambda) = \exp[-0.9326(\frac{\lambda}{2\pi})(r_0 - \lambda / 2.5)]. \quad (5)
\]
\[-6.3725 \lambda^2 10^{-4} + 4.3582 \lambda^3 10^{-6}\]
\[B_0 @ 0.8J_c = (0.19701 + 0.038284 \lambda)\]
\[-5.2652 \lambda^2 10^{-4} + 3.6624 \lambda^3 10^{-6}\]
\[J_c = 4.6706 - 0.18567 \lambda + 0.0039701 \lambda^2 - 3.2024 \lambda^3 10^{-5}\]
\[B_m @ J_c = 1.7768 + 0.19279 \lambda - 1.3027 \lambda^2 10^{-3}.\]
(7)

Coil dimensions

The choice of the coil dimensions in Fig. 1, concerns the number turns and layers, as well as the conductor size, in order to optimize the coil packing factors, etc. A simple choice of the dimension may be a quarter of the period length for the dimension parameters \((a \times b)\). The coil dimensions \((8 \times 8)\) were used for the reference undulator.

An additional eight coil dimensions from \((7 \times 7)\) to \((9 \times 9)\) were selected, and calculated for both kinds of the SC coils. When the calculated fields were compared with the \((8 \times 8)\) reference, the fields for the \((7 \times 7)\) coil were about 90.5% of the reference, and those for the \((9 \times 9)\) were about 105% of the reference.

CONCLUDING REMARKS

Though the field deviation shown in Fig. 6 is limited to extreme cases it may be worthwhile to develop the coil maximum field dependent on the coil radius, equivalent to Eq. (5).

REFERENCES

[9] Cobham Technical Services -Vector Fields Software, Oxford, UK. The author does not imply that a similar software by other vendors cannot perform the work.
