The Nanobender: a New X-Ray Mirror Bender with Nanometer Figure Correction

Carles Colldelram¹, Josep Nicolas², Claude Ruget¹
Llibert Ribo¹, Albert Tomàs³, Carlos Martín-Nuño³,
David Úbeda³

1. ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
2. SLAC national accelerator laboratory, Menlo Park, United States
3. Sener Ingenieria y Sistemas, Cerdanyola del Vallès, Barcelona, Spain
Summary

Presentation Summary

- Precedents
- New concepts
- Bender design
- Correctors design
- Construction
- Measurements & Results
- Next Steps
 - Active Optics
- Conclusions
Precedents

ALBA BL13 Beam Line

- Protein Crystallography Beam Line
- Vertical Focusing Mirror: Outsourced
 - Include a Gravity compensators
 - We request to place more compensator to play with figure correction
Precedents 2010

BL13 VFM Optimization

- We corrected the slope error by means of the gravity compensators
- Optimization of the compensators position
- Manual compensators
- This compensators are not thought for this function: not friendly adjustment

This 300 mm long mirror was optimized from 0.242 µrad to 0.055 µrad

By means of two of the gravity compensators both pushing from below
The simulation of the beam by means ray-tracing with the measured corrected mirror figure.

In-Situ measurement after 2 years agrees with the laboratory optimization and measurement.
New concepts

Geometrical vs Force constraints

Applied Forces

The hard way

By means Rigid mechanics which introduce the required deformation

The soft way

...By means of stable-force actuators
Bender design

Lay-out

Bender Mechanism: Encapsulated
Correctors
Puller
Mirror
Pusher
Bender design

Bender Mechanism

- Based on compression springs
- Convectional motion system for the compression Range
- Force gauge measurement
- Off-axis relieving Force transmission
- Punctual contacts
- Flexion at 25 mm from the support
- Radius of curvature: 500 m
- Forces up to 500 N
- Force Resolution: 0,001 N
- Focus independent of figure correction
Bender design

The correctors

- 22 mm width
- High resolution force correctors
- Ultra low k springs
- Forces up to 40 N, ±20 N.
- Resolution up to 0.001 N
- High stability:
 - Independent to the set curvature, no crosstalk
- No parasitic torsions
- UHV compatible (adaptive optics)
Construction
Measurements & results

ALBA NOM

- This is a 1.5 m long highly accurate scanning deflectometer by air bearings
- Ironless linear motor
- Optical set-up
 - Autocolimator
 - Pentaprism

The laboratory temperature is stabilized by means of a PID controlled post-heating system.
Measurements & results

Mathematical deformation Model

Euler – Bernoulli law

\[EI \frac{d^4}{dx^4} z(x) = \sum_{n=1}^{N} F_n \delta(x - x_n) \]

- LINEAR model, allows superposition
- Curvature of deformation is a piecewise linear function
- Surface deformation is a piecewise cubic polynomial

For an induced deformation of >600 nm after removing curvature, the model is accurate below 1 nm
Measurements & results

Bending performance

<table>
<thead>
<tr>
<th>Performance</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending range</td>
<td>0-500 N</td>
</tr>
<tr>
<td>Bending resolution</td>
<td><0.001 N</td>
</tr>
<tr>
<td>Strain gauge sensitivity</td>
<td>16 nrad rms</td>
</tr>
<tr>
<td>Actuator linearity</td>
<td>35 nrad</td>
</tr>
<tr>
<td>Bending repeatability</td>
<td>15 nrad rms</td>
</tr>
<tr>
<td>Stability</td>
<td><15 nrad/5 days</td>
</tr>
</tbody>
</table>

![Diagram](image1.png)

E\textsubscript{2} vs Gauge

- Strain Gauge [N]: -55 to -35
- E\textsubscript{2} Error [nrad RMS]: -80 to 80

![Diagram](image2.png)

E\textsubscript{3} vs Gauge

- Strain Gauge [N]: -55 to -35
- E\textsubscript{3} Error [nrad RMS]: -40 to 40

Bending range: 0-500 N

Bending resolution: <0.001 N

Strain gauge sensitivity: 16 nrad rms

Actuator linearity: 35 nrad

Bending repeatability: 15 nrad rms

Stability: <15 nrad/5 days
Measurements & results

Correctors performance

Resolution of 0.001N allows sub nanometer correction, as well as stability

20 N is the force estimated to correct 0.5 μrad rms mirrors for errors with period down to 22 mm
Measurements & results

Correctors performance

Stability for 130h

Repeatability on recovering a position between motions to random points
Measurements & results

Mirror Optimization

Initial slope error: 0.87 µrad RMS
Corrected slope error: 0.115 µrad RMS

Initial surface error: 23.2 nm RMS
Corrected surface error: 0.858 nm RMS

The mathematical model:
- Optimizes the correctors position
- Optimizes the corrector force (and its sense)

The model predicts the deformation of the mirror with accuracy better than 0.08 nm RMS
Next steps

Corretcor Improvements

- Corrector Repeatability: Done
- Remove the bender mechanics encapsulation
- Compact the bender mechanism
- Compact the correctors

Repeatability Long Range

Repeatability Short Range
Next steps

Corrector Improvements

- k magnet system for spring k compensation
- Insensitivity to magnet position in a ± 1 mm

![Diagram of mirror correction system with annotations: Frame, Magnet, Mirror, Level arm pivot, Spring, Motor.](image)
Next steps

Corrector Improvements

To be implemented soon

- Spring length reduction by means the force compensation system:
 - Test prototype done and measured.
 - -k spring with magnet.

- Removal of the bearing friction on the spring articulation:
 - Test prototype done
 - Zero-torque frictionless articulation
 - By means a flexure and magnet system

See the poster :
ID: 2029 - MOPE01 Stabilization Methods for Force Actuators and Flexures
Next steps

Active Optics

- With such figure error accuracy and resolution it is possible to correct beam wavefront distortions.
- With a double spring the corrector can switch from pusher to puller just by moving along the range.
- Change the Stepper motor for a UHV compatible one.
- Mount as many correctors as space allows.
Conclusions

- The proposed solution of a bender with figure correctors based in force constrains works at nanometer level.
- A mirror bender with correctors without crosstalk is achieved.
- A very stable correctors have been design and implemented.
- New –k compensated correctors have been designed and tested. They keep force constant within 1 mN in a range of motion of the mirror up to 2 mm.
- New, frictionless, torque free articulation has been designed, and is being currently tested.
Acknowledgments

Joan Casas
Jose Ferrer
Gabriel Peña
Llibert Ribó
Pablo Pedreira

...
Thanks for your attention …