Development of a linear electron accelerator-based neutron source for analysis of structural materials

Brian E. O’Rourke1,2, Takeshi Fujiwara1,2, Noriyosu Hayashizaki1,2,3, Koichi Kino1,2, Ryunosuke Kuroda1,2, Koji Michishio1,2, Takemi Muroga2, Hiroshi Ogawa1,2, Nagayasu Oshima1,2, Daisuke Sato1,2, Norihiro Sei1,2, Tamao Shishido2, Ryoichi Suzuki1,2, Masahito Tanaka1,2, Hiroyuki Toyokawa1,2, Akira Watazu1,2

1National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
2Innovative Structural Materials Association (ISMA), Tsukuba, Japan
3Tokyo Institute of Technology, Tokyo, Japan

email: brian-orourke@aist.go.jp

e is developing a
gun

Neutrons are a powerful probe of structural materials due to their high penetration. As part of the Innovative Structural Materials R&D project funded by the New Energy and Industrial Technology Development Organization (NEDO), the Innovative Structural Materials Association (ISMA)1 is developing a dedicated, compact electron-accelerator based neutron source at the National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba, Japan, for the characterization of structural materials.

The accelerator is designed to have a maximum electron beam power of \(~10\) kW (\(\sim36\) MeV and \(~275\) mA), which will be incident on a water-cooled Ta target. The electron beam will have a maximum pulse length of around 10 \(\mu\)s at a repetition rate of 100 Hz. Neutrons produced through photo-nuclear reactions will be cooled by a decoupled solid methane moderator. Using this pulsed, low-energy neutron beam we plan to perform various imaging techniques.

Outline of the Neutron Source

Klystron
- Pulse width: 10 \(\mu\)s (max)
- Rep. Rate: 100 Hz (max)
- RF Power: 7 MW (max)

Electron Gun
- Acc. Energy:
 - 3 MeV
- RF Input Power:
 - 1.4 MW
- Beam Power:
 - 750 W (Max)
- Installed \(e^+\) gun

Accelerator
- RF freq.: 2.856 GHz
- Est. Energy: \(~35\) MeV (Max)
- Beam Current: \(~275\) mA (Max)
- Pulse Width: 10 \(\mu\)s (Max)
- Rep. Rate: 100 Hz (Max)
- Beam Power: \(~10\) kW (Max)

Neutron Production Target
- Neutron beam
- Cd coupler
- Solid methane moderator
- Ta target
- Graphite

construction
- ~ 20 m
- ~ 10 m

Neutron Beamline
- Target
- Cooling Water
- Sample and Detector

Bragg Edge Imaging
- Pulsed neutron source
- Bragg edge imaging
- Contribution on structural materials

Overview

We have optimized the design for Bragg edge imaging
- High power electron beam (Max \(~10\) kW)
- High rep. rate (100 Hz) and short pulse (<10 \(\mu\)s)
- High neutron energy resolution (decoupled solid methane moderator)
- Compact neutron beamline (length: 8 m)

Industrial Use

- By measuring the intensity of neutrons transmitted through a sample as a function of neutron wavelength (energy) using a large 2-dimensional detector, we can characterize the crystalline phase and strain, crystal size and orientation etc. in a single measurement.
- We plan to apply this technique to various structural materials in order to help with the development of new, lightweight materials for transport vehicles.
- In collaboration with materials manufactures and researchers, we plan to provide a dedicated, user friendly, neutron source for materials analysis.