EVIDENCE OF THE ELECTRON-SCREENED OPPENHEIMER PHILLIPS REACTIONS 162Er(d,n)163Tm OR 162Er(p,γ)163Tm IN DEUTERATED MATERIALS SUBJECT TO A LOW-ENERGY PHOTON BEAM

T. L. Benyo,† B. M. Steinetz, A. Chait, NASA Glenn Research Center, Cleveland, OH 44135, USA
L. P. Forsley, JWK Corporation, Annandale, VA 22003, USA
V. Pines, M. Pines, Pinesci Consulting, Avon Lake, OH 44012, USA
†also at Vantage Partners LLC, Cleveland, OH 44135, USA

Abstract

NASA Glenn Research Center (GRC) is investigating electron screened, enhanced nuclear reactions in deuterated materials exposed to photons with kinetic energies above and below the deuteron photo-dissociation energy in a stationary deuteron center-of-mass system using a repurposed medical linear accelerator (LINAC). The objective of the current work is to utilize a photon beam with energies around the deuteron photo-dissociation energy of 2.226MeV to induce possible reactions in deuterated materials and investigate the mechanisms producing these reactions.

Through these investigations, GRC has found that repeatable nuclear reactions have occurred resulting in nuclear products observed using high purity germanium (HPGe) gamma spectroscopy. Evidence of 162Er(d,n)163Tm or 162Er(p,γ)163Tm has been shown with the appearance of gamma peaks coinciding with 163Tm from three samples containing deuterated erbium exposed to a photon beam in three separate experiments. These reactions may be the result of electron-screening and/or a variation of the Oppenheimer-Phillips reaction. This paper describes the theory behind the proposed reactions, the experiments conducted at GRC, and the experimental evidence of the suspected creation of the 163Tm isotope.

THEORETICAL CONSIDERATIONS

Charged particle nuclear interactions, including nuclear fusion, require overcoming the Coulomb barrier. For example, the deuteron fusion reaction resulting in tritium and a proton, d(d,p)t, has a kinetic energy threshold of 10 keV. Yet, a number of accelerator experiments with deuterated metals have observed that the d(d,p)t reaction rates exceed the predicted rates using the theoretical cross-section and by measuring the rate of fusion proton production. Consequently, the electron-screening potential, U_e, has been experimentally measured at over twice the theoretical value resulting in theoretical reaction rate discrepancies in both astrophysical [1] and accelerator-driven nuclear phenomena [2] where for example, Czerski reports an U_e experimental value of 296±15eV vs. a theoretical value 133.8eV for palladium.

These experiments accelerated deuterons at a wide range of metal targets. It was presumed that metal target electrons provided the electron-screening allowing implanted target deuterons to fuse with the incoming deuterons. However, this interpretation ignores the additional free electrons produced as decelerating deuterons locally ionize metal atoms as Pines and Pines have noted [3].

Three of the leading hypotheses investigated which may lead to the found reaction products include:
- Enhanced electron-screening
- Mirror Oppenheimer-Phillips (O-P) reaction
- O-P reaction and then a subsequent proton capture

Electron-Screening

Electrons shield positive charges of reacting nuclei increasing Coulomb barrier penetrability and reducing the Gamow Factor. This reduction enhances nuclear interaction cross-sections thereby increasing nuclear reaction rates. Electron-screening has been observed with accelerated deuteron beams on metals [2] and alloys from aluminum to tungsten, resulting in a range of U_e from 13 eV to 2.1 keV [4]. The latter is especially important given the non-linear Gamow Factor and the threshold for deuterium-tritium fusion at 5 keV.

Oppenheimer-Phillips Reaction

The Oppenheimer-Phillips reaction [5] was initially proposed by Oppenheimer and Phillips to resolve an unexpected excess of protons vs. neutrons being “stripped off” of accelerated deuterons and consumed by a higher Z nucleus. Bethe [6] later commented upon the role of nuclear charge, Z, with $Z>30$, as being required for the O-P reaction. Some researchers [7] have concluded that deuteron accelerator experiments do not exhibit an excess of protons over neutrons, as in d(d,n)He, hence no O-P reactions. However, they reported electron-screening. Similarly, GRC may not have observed O-P reactions as the deuteron was stationary with insufficient deuteron acceleration to enable classic O-P reactions. Instead, a variation of the O-P reactions as described below may have occurred.

Enhanced Oppenheimer-Phillips Reaction Irradiating deuterated metal samples with x-rays or gamma rays increases the flux of energetic electrons and may cause a greater likelihood of the O-P reaction to happen, hence an enhanced O-P reaction. Here, an ionized target nucleus with $Z>30$ polarizes the positive proton in the deuteron away from the positive target nucleus. Then, the neutron is ‘captured’ and the proton ‘ejected’. Neutron activation of deuterated samples has been observed in LINAC irradiation experiments [8] possibly due to this type of reaction.
The postulated enhanced O-P reaction and energy levels of the participants in this reaction are indicated below, where M is the target nucleon, d is the deuteron, p is the proton and n is the neutron:

- \(\frac{2}{2}M(d, p)4^{+}M \)
- E.g. \(^{162}Er(d, p)^{163}Er \)
- Expelled proton has up to > 6 MeV of kinetic energy
- Deuteron: binding energy (B.E.) of ~2.2 MeV
- Target nucleus: B.E. of ~8.8 MeV/nucleon
- Leaves a difference of ≤6.6 MeV where up to 99% of that energy goes off with the ejected proton.

Mirror Oppenheimer-Phillips Reaction

If sufficient electron-screening occurs, a Mirror O-P process may occur and the screened proton may be captured by the target nucleus ejecting the neutron instead of the proton. This suggests sufficient screening to prevent deuteron polarization.

The postulated Mirror O-P reaction and energy levels of the participants in this reaction are predicted below:

- \(\frac{2}{2}M(d, n)2^{+}M \)
- E.g. \(^{162}Er(d, n)^{162}Er \)
- Expelled neutron has > 6 MeV of kinetic energy
- Deuteron: B.E. of ~2.2 MeV
- Target nucleus: B.E. of ~8.8 MeV/nucleon
- Leaves a difference of ≤6.6 MeV energy where 98% of that energy goes off with the ejected neutron. Note: the neutron leaves with less energy than the proton because of their mass difference.

EXPERIMENT DESCRIPTION

A LINAC Model LS200 manufactured by Varian was modified to expose the samples to photon energies of ≤2.4 MeV very close to its braking target as shown in Fig. 1. For this study, the specimens were positioned within approximately 7.4 mm (0.29 in.) from the exit plane of the tungsten-braking target. At 7.4 mm, it is estimated that the samples saw a radiation dosage of 2.4x10^6 rad/min at ~2-MeV beam energy. An ionization gauge radiation detector was set up below the test samples at the isocenter ~100 cm from the braking target to monitor radiation levels emanating from the LINAC beam. The radiation level, reflected power, gun current (voltage), and target current (voltage) were recorded and used to monitor beam operation to ensure that the beam flux was not changing with time.

The samples exposed in this study were created with deuterium-loaded erbium (99% purity) metal (ErD2) mixed with deuterated paraffin (C36D74) along with molybdenum to act as a neutron witness material. The samples were placed into glass vials and subsequently positioned in the exposure path of a modified industrial LINAC.

EXPERIMENTAL RESULTS

Before beam exposure, each as-received material was scanned for gamma spectral lines and none were found to have any activity different than standard background lines.

Samples were then exposed to the low-energy photon beam for ~4-6 hours. Gamma spectroscopy was used to measure nuclear activity in samples after exposure.

Gamma Spectroscopy Results

The resulting HPGe detector spectra were displayed and gamma peaks were analyzed with the PeakEasy software from Los Alamos National Laboratory [9]. Gamma peaks were checked also with the Lawrence Berkeley National Laboratory database [10], amongst other sources, to confirm identity of the radioisotopes. For every test sample, at least one 15-min duration gamma scan was performed. Follow-up scans were performed on several of the specimens to evaluate half-lives by examining the change in gamma activity levels. Figure 2 shows part of one of the gamma spectra collected showing x-ray lines consistent with 163Tm (via possible O-P reactions with 162Er), 163Er (via neutron capture of 162Er), and 163Er (via neutron capture of 164Er). The presence of 171Er (via neutron capture) was also observed, but not shown in Fig. 2.

It is worth noting that the naturally occurring isotopes [11] of erbium and thulium are: 162Er (0.14%), 164Er (1.61%), 166Er (33.60%), 167Er (22.95%), 168Er (26.80%), and 170Er (14.90%); 169Tm (100%). Any neutron capture of 166Er or 167Er would result in a stable isotope of erbium. Neutron capture of 168Er would result in the production of 169Er with a 9-day half-life, however, the gamma and x-ray

Figure 1: Photograph of LINAC and sample holder with test samples.

Figure 2: Gamma spectra of deuterated erbium sample.
peaks of 169Er are very weak and thus would not be seen in the gamma scans. Neutron capture of 169Tm would result in 170Tm with a half-life of 128.6 days and weak x-ray and gamma peaks which would be very difficult to detect.

Gamma peaks significantly above background from the collected gamma spectra were analyzed and separated into groups corresponding to the following radioisotopes: 163Er, 171Er, 99Mo, 101Mo, 99mTc, and 101Tc. In addition, another radioisotope, 163Tm, was identified consistent with either 162Er(d,n)163Tm or 162Er(p,γ)163Tm. Radioisotope identification was confirmed by identifying that the radioisotope’s largest gamma or x-ray peak was present, determining that any subsequent peaks were present, and calculating the half-lives of each peak and comparing with published values.

Table 1 shows gamma results for an exposed sample (PGL2150-2153) containing ErD$_2$+γC$_6$D$_{14}$+Mo and includes the corresponding net area counts, uncertainty, and full width half maximum (FWHM) energy for each gamma peak observed within PeakEasy. Gamma peaks indicating the presence of 99Mo, 101Mo, 99mTc, and 101Tc were also observed but not reported here. The data included in Table 1 shows evidence of erbium and thulium radioisotopes.

<table>
<thead>
<tr>
<th>Radioisotopes identified</th>
<th>Accepted data per LBNL</th>
<th>Experimental data (60 min gamma scan)</th>
<th>PGL2194-2197 (Time between scans: 60 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gamma & x-ray energy, keV</td>
<td>Intensity, percent</td>
<td>Centroid energy, keV</td>
</tr>
<tr>
<td>$^{163/165}$Er</td>
<td>46.70</td>
<td>22</td>
<td>46.49</td>
</tr>
<tr>
<td>$^{163/165}$Er</td>
<td>47.55</td>
<td>40</td>
<td>47.58</td>
</tr>
<tr>
<td>163Tm</td>
<td>49.13</td>
<td>74</td>
<td>49.17</td>
</tr>
<tr>
<td>165Er</td>
<td>53.88</td>
<td>8</td>
<td>53.70</td>
</tr>
<tr>
<td>165Tm</td>
<td>55.62</td>
<td>23</td>
<td>55.41</td>
</tr>
<tr>
<td>169Tm</td>
<td>104.31</td>
<td>19</td>
<td>104.49</td>
</tr>
<tr>
<td>171Er</td>
<td>295.90</td>
<td>29</td>
<td>295.88</td>
</tr>
<tr>
<td>171Er</td>
<td>308.31</td>
<td>64</td>
<td>308.26</td>
</tr>
</tbody>
</table>

Half-life Calculations

The half-life calculations of the 163Tm and 161Er radioisotopes identified in Table 1 were completed for three separate test samples and shown in Table 2. Percent differences from the published values were calculated as noted. Close agreement was found between the 49.13keV x-ray peak and the half-life for 161Tm. The 104.31keV gamma peak was difficult to observe and therefore a half-life calculation was not possible. As noted in Table 2, the 47.55keV x-ray peak’s half-life was somewhat higher than the published value of 161Er for a difference of 13.33%. This higher half-life may be due to the known 163Tm($^\beta^+$γ)163Er which would continue to produce 161Er even after the LINAC was turned off.

Production Mechanisms

Mechanisms considered for creating 161Tm include:

1. Neutron Capture of 162Er and then decay to 163Tm: 162Er(n,γ)163Er, however the subsequent decay would be 162Er($^\beta^+$γ)163Ho($^\beta^+$γ)163Dy which is stable, hence there is no path to 163Tm.
2. Neutron capture of 169Tm results in 170Tm not 163Tm.
3. Electron-screened, enhanced, Oppenheimer-Phillips reaction: 162Er(d,p)163Er then 162Er(p,γ)163Tm
 - Two Step cascade yields a fast proton then capture
 - JANIS cross-sections exist for (p,p) reaction on 161Er, 166Er, 167Er and 169Er, but no JANIS cross-sections exist for 162Er(p,γ)163Tm nor 162Er(p,γ)163Tm
 - Proton capture is documented by Ozkan, et al [12].
4. Electron-screened, enhanced, Mirror Oppenheimer-Phillips: 162Er(d,n)163Tm
 - Very unlikely that deuteron’s proton would be captured over a neutron, however with enough electron-screening, the Coulomb barrier could be overcome.

SUMMARY

NASA Glenn Research Center is investigating electron-screened, enhanced nuclear reactions by irradiating high density deuterated materials using electron LINAC generated bremsstrahlung gamma rays. Observed x-ray peaks and half-life calculations indicate 163Tm was created in three separate experiments. Two possible routes to arrive at 163Tm were postulated including; electron-screened enhanced Mirror O-P reaction of 162Er(d,n)163Tm or proton capture 162Er(p,γ)163Tm after electron-screened O-P reaction of 162Er(d,p)163Er. Confirmation of such reactions would be a significant contribution to the understanding of the Oppenheimer-Phillips process and electron-screening.

<table>
<thead>
<tr>
<th>Radioisotope/published ½ life</th>
<th>47.55 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net area counts</td>
<td>Scan 1</td>
</tr>
<tr>
<td>Net area counts</td>
<td>Scan 2</td>
</tr>
<tr>
<td>Calculated ½ life, min</td>
<td>Scan 3</td>
</tr>
<tr>
<td>Calculated ½ life, min</td>
<td>Scan 4</td>
</tr>
<tr>
<td>108 min -0.92%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radioisotope/published ½ life</th>
<th>49.13 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net area counts</td>
<td>Scan 1</td>
</tr>
<tr>
<td>Net area counts</td>
<td>Scan 2</td>
</tr>
<tr>
<td>Calculated ½ life, min</td>
<td>Scan 3</td>
</tr>
<tr>
<td>Calculated ½ life, min</td>
<td>Scan 4</td>
</tr>
<tr>
<td>85 min +13.3%</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

