INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM FOR THE EUROPEAN XFEL

Julien Branlard, for the LLRF team
TALK OVERVIEW

- Introduction
 - Brief reminder about the XFEL LLRF system
 - Commissioning goals

- Commissioning
 - Planning
 - Steps description + automation
 - Results: some statistics

- Assessment
 - What went well, what didn’t
 - What’s done, what’s left
The European X-ray Free Electron Laser

- 17.5 GeV light source user facility
- TESLA superconducting 1.3 GHz RF cavities
- 1.4 msec RF pulses at 10 Hz
- e- beam 1.35 mA nom. - 4.5 mA max
- Dec. 18th 2015: first beam in injector
- 2015-2016: main tunnel installation
- Q1 of 2017: main linac commissioning
- May 4th 2017: first lasing 😊
- End of 2017: first user operation

source: http://www.xfel.eu

source: http://www.fis-landschaft.de

watch online:
https://www.youtube.com/watch?v=p3G90p4glQA
INTRODUCTION: the XFEL LLRF system

INJECTOR
- A1
- AH1
- RF gun
- 3.9 GHz
- 5 MeV

LINAC1
- cryostring 1
- A1
- DL
- BC1
- A2
- 130 MeV
- 2.4 GeV

LINAC2
- cryostring 2
- BC2
- A3
- A4
- A5

LINAC3
- cryostring 3
- A6
- A7
- A8
- A20
- A21
- A22
- A23
- A24
- A25
- A26
- 17.5 GeV
- undul.

CM1 (8 cav.)
- LLRF master
- Drift compensation
- Reference synchr. + distr.
- Clocks + local oscillator
- Main controller crate (MicroTCA)
- Piezo*
- Power supplies
- * not installed yet

CM2 (8 cav.)
- LLRF master

CM3 (8 cav.)
- LLRF slave

CM4 (8 cav.)
- LLRF slave

LLRF master
- LLRF master
- LLRF slave

KLYSTRON
- CM1
- CM2
- CM3
- CM4
- DM
- BPM
- PZ16M
- PSM
- LOGM
- DCM
- RF
- Wasserplatzhalter
- 3.5 m

18.05.2017 – Julien Branlard, DESY

IPAC 2017 – Copenhagen, Denmark
INTRODUCTION: the XFEL LLRF system

Technical commissioning represents >50% of the commissioning time

Intersystem commissioning is a key factor of the commissioning time
INTRODUCTION: goals

- **INJ** (GUN, A1, AH1)
 - Already commissioned and in operation (cold) throughout 2016
 - Recommissioning necessary due to warm up/cool down + installation of new components

- **L1** (A2)
 - First time commissioning of a complete RF station (4 cryomodules)
 - “Commissioning” of the commissioning plan
 - First time 32 cavity vector sum feedback control

- **L2** (A3, A4, A5)
 - 3 times L1
 - “Validation” of the commissioning plan

- **L3** (A6 – A20)
 - 15 times L1
 - Hardware slightly different
 - Change strategy: horizontal commissioning (step 1 for all stations, then step 2, etc..)
TALK OVERVIEW

- Introduction
 - Brief reminder about the XFEL LLRF system
 - Commissioning goals

- Commissioning
 - Planning and milestones
 - Steps description + automation
 - Results: some statistics

- Assessment
 - What went well, what didn’t
 - What’s done, what’s left
COMMISSIONING: planning

- Commissioning team
 - 8 LLRF experts
 - 6 trained colleagues from DESY
 - 6 colleagues from external facilities

Commissioning team of 20 people

- Commissioning shifts
 - Two 8-hours shifts / day
 - Following DESY’s operator shift program

- Procedure
 - Parallel work (station-wise)
 - Follow detailed commissioning checklist
 - Gather issues.
 - Investigate/fix on maintenance day (once a week)
 Initial checks
 - LLRF system ready for commissioning?

 Cold coupler conditioning

 RF signal checks: Forward and Reflected
 - Cabling issues? Signal saturation?

 Frequency tuning
 - From parking position to resonance

 RF signal checks: Probe
 - Cabling issues? Signal saturation?

 Coupler tuning
 - Target $Q_L = 4.6e6$

 Power-based gradient calibration
 - Coarse

 Closed-loop operation
 - Feedback, learning feedforward, …
COMMISSIONING: LLRF milestones (2/2)

- Establish beam transport
 - 30 bunches, 0.5nC

- Cavity phasing
 - Using waveguide phase shifters

- Beam-based gradient calibration
 - Fine relative calibration
 - Absolute validation using energy server

- Estimated schedule
 - Injector (gun, A1, AH1) 2 weeks
 - L1 (1 RF station) 2 weeks
 - L2 (3 RF stations) 2 weeks
 - L3 (15 RF stations) 2 months

Example: beam induced transient during cavity phasing
Cavity tuning

1. Perform initial check (1 motor turn ~ 15 kHz)
 “Check that the detuning changes in the correct direction, in the proper amount and for the correct cavity”

2. if successful, tune to resonance (coarse)
 “Based on step-to-resonance measured at AMTF”

3. If successful, tune to resonance (fine)

Example: A3.L3 1 RF station (32 cavities) tuned from parking position to resonance in 1h.
Cavity tuning
Cavity tuning
RF signal checks (1/2)

“what’s wrong with this picture?”

- Calibration
 - Probe
 - Forward
 - Reflected
- Limiters
 - Pre-Limit
 - Limit
- Phase Check
 - Peak
 - Phase

18.05.2017 – Julien Branlard, DESY
IPAC 2017 – Copenhagen, Denmark
RF signal checks (2/2)

- 3-4 mins per RF station
- Verify phase shifter functionality (32x)
- Identify cabling errors:
 - FORW ↔ REFL
 - C1 ↔ C2

Reminder:

- LLRF has 2500+ RF signals (Probe, forward, reflected)
- x2 counting int/ext cabling
Cabling issues
- 15 cabling issues (outer rack) identified before cool down
- 11 cabling issues (outer rack) identified after cool down
- 0 cabling issues (inner rack) identified so far

Multipacting
- Observed on nearly all stations
- Start appearing around 550-600 MV (i.e. ~17-18 MV/m)
- Up to 50% of cavities / cryomodule required conditioning (worse case)
- Conditionable on all stations
- Required couple of hours per station (@10 Hz)
- 3 GeV additional energy after conditioning
COMMISSIONING: multipacting commissioning
XFEL LLRF commissioning

COMMISSIONING: some statistics

- **4 out of 616** couplers shorted after test in XTL

- **5 out of 616** cavities not used due to AMTF results
 - A5.M1.C5 temporary, shorted pick up
 - A6.M3.C1 high FE/X-ray (10 MV/m limit)
 - A7.M2.C7 high FE/X-ray (11 MV/m limit)
 - A10.M1.C3 low Eacc BD (no FE) (13 MV/m limit)
 - A18.M4.C4 high FE/X-ray (23 MV/m limit + wrong P\textsubscript{FORW})

- **10 out of 19** RF stations actually have all cavities tuned
 - i.e only 50% of the RF stations have a 32-cavity vector sum
RF regulation (in-loop)

Intra-pulse $\sigma(dA/A) = 0.0057\%$

Pulse-to-pulse $\sigma(dA/A) = 0.0056\%$

Intra-pulse $\sigma(dP) = 0.0051\text{ deg.}$

Pulse-to-pulse $\sigma(dP) = 0.0024\text{ deg.}$

Specifications: $\sigma(dA/A) = 0.01\%$

$\sigma(dP) = 0.01\text{ deg.}$

Courtesy S. Pfeiffer
XFEL LLRF commissioning

TALK OVERVIEW

■ Introduction
 ▪ Brief reminder about the XFEL LLRF system
 ▪ Commissioning goals

■ Commissioning
 ▪ Planning
 ▪ Steps description + automation
 ▪ Results: some statistics

■ Assessment
 ▪ What went well, what didn’t
 ▪ What’s done, what’s left
ASSESSMENT: what went well

- Install / test as much as possible, as early as possible
 - Individual component tests
 - Crate installation
 - Rack installation

- Automation
 - Simple scripts
 - Broken down into single, modular tasks

- Availability of cryomodule test data
 - Results from individual cryomodule tests
 - Cavity gradient limits, phase shifter limits, …
 - What to pay attention to (tune / don’t tune)
ASSESSMENT: what went well

- **Checklists + documentation**
 - Prepare the checklist
 - Test the checklist
 - Iterate the checklist
 - Stick to it

- **Machine operation**
 - Handed over RF station to operators after couple of days
 - Regular operator trainings
 - On-call LLRF experts
 - Finite State Machine: ramp up / down stations + recovery

- **Strong Team**
 - Large machine → large commissioning team
 - Beware of the installation burn out (2 years…)
 - External support (fresh eyes + enthusiasm)
ASSESSMENT: what didn’t go so well

- Initial checks of tuners drivers
 - More than 40% initial checks failed
 - Several iterations required → time consuming

- Triggered one cryo incident
 - Multipacting: “working here but quenching there”

- Too long recovery time ("phase jumps")
 - Intricate combination of timing + reset + clocks resulting in 240 deg. phase jumps (single boards) after a crate reboot

- Piezo driver
 - Piezo driver production was delayed > 2 years
 - To be installed and commissioned during maintenance this year
The baseline commissioning phase went relatively well
- Strong commissioning team
- Automation

Still a few milestones on our “to do” list
- Max energy?
- Piezo
- Performance assessment, stability, drifts (i.e. “advanced” commissioning)
- Improved diagnostics (aging, radiation, system health)

Further higher-level development
- Inter-RF station communication + automation
- Multi-beamline operation
THANK YOU FOR YOUR ATTENTION!

Photo Dirk Noelle