Amorphous carbon thin film coating of the SPS beamline: evaluation of the first coating implementation.

M. Van Gompel, P. Chiggiato, P. Costa Pinto, P. Cruikshank, C. Pasquino, J. Peres Espinos, A. Sapountzis, M. Taborelli and W. Vollenberg
CERN, Geneva, Switzerland
Amorphous carbon thin film coating of the SPS beamline

1. Motivation
2. Carbon coatings to mitigate e-cloud
3. Implementation strategy
4. The coating setup
5. Results
6. Summary
1. Motivation

- SPS beam parameters

<table>
<thead>
<tr>
<th>Beam structure</th>
<th>P (GeV/C)</th>
<th>N_b (10^{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 ns, 4x72b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal for LHC</td>
<td>450</td>
<td>1.2</td>
</tr>
<tr>
<td>High Luminosity LHC (HL-LHC)</td>
<td>450</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Performance will be limited by instabilities due to electron cloud
1. Motivation

How to mitigate e-cloud?

• Clearing electrodes.
• Axial magnetic fields to keep secondary electrons close to the wall.
• Decrease the Secondary Electron Yield (SEY) of the beam pipe walls.
1. Motivation

How to mitigate e-cloud?

- Clearing electrodes.
- Axial magnetic fields to keep secondary electrons close to the wall.
- Decrease the Secondary Electron Yield of the beam pipe walls.

Beam scrubbing coating
1. Motivation

LIU-SPS Scrubbing Review 8-9th September 2015: Conclusions and Recommendations

W. Fischer (BNL, review chair), Y. Suetsugu (KEK), K. Cornelis, J.M. Jimenez, M. Meddahi, F. Zimmermann (CERN)

Recommendation

Use a staged, partial deployment of aC coating to reach performance target:

- Take benefit of the impedance reduction activities to coat the corresponding elements (Quads and SSS)
- Replace any miss-functioning magnets by one with a aC coated chamber
- Make aC coating of MBB dipoles the baseline, until there is high confidence that scrubbing alone can establish LIU and HL-LHC performance goals
- Investigate feasibility of replacing standard drifts by coated chambers, with low impact

The following implementation timeline can be used: (E)YETS:

- Pilot run (1 arc) for QF+SSS aC coating and impedance reduction;
- MBB coating for limited cells;

1. Motivation

LIU-SPS Scrubbing Review 8-9th September 2015:
Conclusions and Recommendations

W. Fischer (BNL, review chair), Y. Suetsugu (KEK), K. Cornelis, J.M. Jimenez, M. Meddahi, F. Zimmermann (CERN)

Recommendation

Make aC coating of MBB dipoles the baseline, until there is high confidence that scrubbing alone can establish LIU and HL-LHC performance goals

- investigate feasibility of replacing standard drifts by coated chambers, with low impact
- The following implementation timeline can be used:
 (E)YETS:
 - Pilot run (1 arc) for QF+SSS aC coating and impedance reduction;
 - MBB coating for limited cells;

2. Carbon coatings to mitigate e-cloud

- **2006**: Request of development
- **2007**: First coatings SEY$_{\text{max}}$ 1.3
- **2008**: SEY$_{\text{max}}$ 1.0 on sample
- **2009**: 3 dipoles in SPS
- **2010**: Second series of dipoles in SPS
- **2011**: 2m coating in hollow cathode
- **2012**: Dipole coating in hollow cathode
- **2013**: Development for in-situ coatings
- **2014**: Coating of MBB with 6m modular hollow cathode
- **2015**: Coating of QF with modular hollow cathode
- **2016**: Coating of 2x MBB dipole with 13.2 m train
2. Carbon coatings to mitigate e-cloud

<table>
<thead>
<tr>
<th>Machine element</th>
<th>Fraction of the machine</th>
<th>Multipacting threshold (SEY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA dipole magnet</td>
<td>32.8 %</td>
<td>1.60</td>
</tr>
<tr>
<td>MBB dipole magnet</td>
<td>35.0 %</td>
<td>1.40</td>
</tr>
<tr>
<td>QF quadrupole magnet</td>
<td>4.8 %</td>
<td>1.30</td>
</tr>
<tr>
<td>QD quadrupole magnet</td>
<td>4.8 %</td>
<td>1.05</td>
</tr>
<tr>
<td>LSS</td>
<td>4.1 %</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Results of PyECLOUD simulations, courtesy of A. Romano, G. Iadarola, G. Rumolo and K. Li
2. Carbon Coatings to mitigate e-cloud

Electron cloud current in the SPS with an electron cloud detector

The B-field of 1.2 kGauss corresponds to the field of the SPS dipoles at injection energy (26 GeV)

2. Carbon Coatings to mitigate e-cloud

Electron cloud current in the SPS with an electron cloud detector

Beam Cross section

Proton beam

Coating
3. Implementation strategy

The Super Proton Synchrotron
3. Implementation strategy

Layout

1 cell = 63995 mm

Risk & cost optimisation:

• Ranking components by “e-cloud”
3. Implementation strategy

Risk & cost optimisation:

- Ranking components by “e-cloud”
- In-situ coating approach
- Minimize transport/removal of magnets from the tunnel
3. Implementation strategy

Layout

1 cell = 63995 mm

To do list for EYETS 2016-2017

• 4 MBB pairs
• 2 QD’s and adjacent SSS
• 9 QF’s and adjacent SSS
• LSS of sector 440 (27 m)

Totalling 33 coating runs
3. Implementation strategy

Logistics

1 cell = 63995 mm

Coating lab 1
+ new drift tubes

Coating lab 2 (radioactive)
4. The coating setup

MBB hollow cathode train

Coating setup

400 nm thick a-C coating

7.5 cm
4. The coating setup

MBB hollow cathode train

- 13.2 m long modular train for MBB
- 2 power supplies
- Continuous movement back and forward (A = 12 cm) during coating process
- Coating process takes 22 h
4. The coating setup

- 3.2 m long modular train for QF
- 1 power supply
- Continuous movement back and forward (A = 12 cm) during coating process
- Coating process takes 22 h
4. The coating setup

QF hollow cathode train

Coating setup

- 3.2 m long modular train for QF
- 1 power supply
- Continuous movement back and forward (A = 12 cm) during coating process
- Coating process takes 22 h

400 nm thick a-C coating

9.5 cm
4. The coating setup

QF hollow cathode train

- 3.2 m long modular train for QF
- 1 power supply
- Continuous movement back and forward (A = 12 cm) during coating process
- Coating process takes 22 h
4. The coating setup
5. Results

Start on Wed 04/01

End on Thu 23/02
5. Results

Specified SEY_{max}

E-cloud mitigation:

- **LSS + QD**
- **SSS**
- **MBB**
- **QF**

DC magnetron
- Lab 1: $SEY_{\text{max}} = 0.97$, $\sigma = 0.03$
- Lab 2: $SEY_{\text{max}} = 0.99$, $\sigma = 0.03$
- Tunnel: $SEY_{\text{max}} = 0.98$, $\sigma = 0.02$

Accuracy on SEY measurement is ± 0.03
5. Results

\[
\begin{align*}
\text{SEY}_{\text{max}} &= 0.97 \\
\sigma &= 0.03
\end{align*}
\]

accuracy on SEY measurement is ± 0.03
6. Summary

• First successful in-situ coating campaign in Jan & Feb of 2017.
• The a-C coating technique has proved its scalability to an industrial process.
• SPS is running smoothly since 24/04/2017.
• If scrubbing does not mitigate the e-cloud sufficiently, the coating technique is ready for full scale implementation.
Thanks to all teams and