MAGNETIC MEASUREMENTS OF NICA BOOSTER DIPOLES

V. Borisov*, A.Bychkov, A.Donyagin, O. Golubitsky, H. Khodzhibagiyan, S. Kostromin, M.Omelyanenko, M.Shandov, A. Shemchuk , Laboratory of High Energy Physics, Joint Institute for Nuclear Research, Dubna, Russia

Abstract

NICA is a new accelerator collider complex under construction at the Joint Institute for Nuclear Research in Dubna. NICA Booster magnetic system consists of 40 dipole and 48 quadrupole superconducting magnets. The magnetic field parameters of each magnet must be measured. At the moment 13 series dipole magnets are assembled and have successfully passed all the tests. Booster dipole magnets are 2.14 m-long, 128 /65 mm (h/v) aperture magnets with design similar to Nuclotron dipole magnet but with curved (14.1 m radius) yoke. They are designed to create magnetic fields up to 1.8 T. Magnetic field parameters will be measured at "warm" (300 K) and "cold" (4.5 K) conditions. This paper describes magnetic measurements methods and developing of magnetic measurements system. The obtained results of magnetic measurements of 13 magnets are summarized here.

INTRODUCTION

The NICA accelerator complex [1], [2] will include 600 MeV/u Booster synchrotron as a part of the heavy ion injection chain of the NICA Collider. The Booster [3] of the NICA accelerator complex is a superconducting synchrotron which will be placed inside the yoke of the former Synchrophasotron. NICA Booster magnetic system consists of 40 dipole and 48 quadrupole superconducting magnets. The technical complex [4] for assembly and testing of SC magnets for the NICA and FAIR project at the Laboratory of High Energy Physics (LHEP) is operating in assembling and series testing mode. At the moment, 13 dipole magnets have been manufactured and fully tested. The designs of the magnets for the NICA booster are given in [5], [6]. The main characteristics of the dipole magnet for the NICA booster are presented in Table 1.

Table 1: Main characteristics of the NICA Booster Magnets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of magnets</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Magnetic field (inj./max.)</td>
<td>T</td>
<td>0.11 /1.8</td>
</tr>
<tr>
<td>Effective magnetic length</td>
<td>m</td>
<td>2.2</td>
</tr>
<tr>
<td>Beam pipe aperture (h/v)</td>
<td>mm</td>
<td>128 /65</td>
</tr>
<tr>
<td>Bending angle</td>
<td>deg</td>
<td>9</td>
</tr>
<tr>
<td>Radius of curvature</td>
<td>m</td>
<td>14.01</td>
</tr>
<tr>
<td>Operating current</td>
<td>kA</td>
<td>9.68</td>
</tr>
<tr>
<td>Field error at R= 30 mm</td>
<td></td>
<td>≤ 6·10⁻⁴</td>
</tr>
</tbody>
</table>

The boosters operating cycle consists of stages of linear field ramping up and down with a ramp rate of 1.2 T/s and two stages of a constant field: the stage of injection magnetic field of 0.11 T and the stage of electron cooling of 0.56 T. According to the specification, the following parameters of dipole magnets of the booster have to be measured:

- Relative standard deviation of effective lengths
 \[L_{\text{eff}} = \frac{\int B_s ds}{B_s(0)} \delta L_{\text{eff}} = \frac{\Delta L_{\text{eff}}}{L_{\text{eff}}} \leq 5 \cdot 10^{-4} \]

- Magnetic field direction (dipole angle), angle between the magnetic and mechanical median plane
 \[\alpha_1 = -\arctg\left(\frac{A_1}{B_1}\right) \quad \sigma(\alpha_1) \leq 0.1 \text{ mrad} \]

* - integrated harmonics

- Relative integrated harmonics up to the 5th
 \[b_2^*, a_2^*, a_3^* \leq 5 \cdot 10^{-4} \]
 \[b_3^* \leq 10^{-3} \]
 \[b_n^*, a_n^*, n>3 \leq 10^{-4} \]

MAGNETIC MEASUREMENTS

Magnetic measurements have been performed using the rotating harmonic coils probes. The step-by-step method of measurement with fast-ramped magnetic field with ramp rate 1.2 T/s was used. Detailed description of the magnetic measurement system and methods was done in papers [7], [8]. The magnetic measuring system (MMS) (see Fig. 1) consists of five identical sections connected among themselves by bellows couplings. Each

section has inside three measuring coils made as a single multilayered printed-circuit board. Pins on the bottom pole of a magnet yoke fix the base frame. Coils consist of 400 turns created from 20 layers, each of which contains 20 turns. Both types of magnetic measurements, “warm” and “cold”, have been performed using same MMS. Temperature of MMS (in range 100-70 K) was controlled by TVO sensors. Corrections of harmonic coils dimensions were applied in harmonics calculations.

MAGNETIC MEASUREMENTS RESULTS

At the moment 13 dipole magnets, (are one third of all,) are assembled and have passed all the tests, including “warm” and “cold” magnetic measurements. The results are presented on figures 5-10.

Effective Length

To calculate the relative variation of dipoles effective lengths, the value approximately equal to the effective length was calculated:

\[L_{\text{eff}} = \frac{1}{B_1(0)} \left[\sum_{i=1}^{5} B_{1,i} \cdot s_i \right] \]

i - section number, *B*$_{1,i}$ - main field harmonic measured by *i* section, *s*$_i$ - part of integration path going thru *i* section, *B*$_1(0)$= *B*$_{1,3}$. Sections 1 and 5 cover edge field regions, *s*$_1$ = *s*$_5$ = *L*$_{coil}$. Sections 2, 3 and 4 cover plateau field region with path *s*$_{2,3,4}$ between coils 1 and 5, this path is divided on three equal parts *s*$_{2,3,4}$. Mean value and relative standard deviation (RSD) of effective lengths are displayed in Fig. 2 as a function of the magnet excitation. RSD of all magnets is in accordance with requirements of specifications. Fig. 3 shows the distribution of effective lengths relative variations for maximum RSD. We can see that for only one magnet the effective length is out from specification.

Dipole Angle

To create a reference point for field direction measurements we use the reference magnetic field created by the additional pointlike windings so, that it is parallel to the surfaces of the poles. We measure phases of the main harmonics of the reference field as initial angles of coils rotation. Average reproducibility (random error) of initial angles is better than 0.1 mrad. High accuracy and high resolution servomotor is used to reproduce initial angles with required accuracy. Distribution of the dipole angle for measured magnets is displayed in Fig.4.
Relative Integrated Harmonics

We use analog compensation for harmonics measurement. The compensation ratio for various sections are in range 1600-21000. Such high values of compensation ratio are possible due to the very precise geometry of the coils made as PCBs. Typical dependence of all measured harmonics on harmonics number is shown at Fig. 5. We can see that noise floor is 0.01 unit. At the reference radius 30 mm, what is larger then external coil radius \(R_{coil} = 22.3 \) mm, we can measure harmonics up to \(n=7 \) (as required by specification). The most critical harmonic is \(b_3 \). Dependence of mean value of \(b_3 \) harmonic with standard deviations is shown at Fig. 6. On fig.7 we can see that for some magnets the distribution of \(b_3 \) harmonic at injection field level exceeds specified tolerance. At the maximum field level, the \(b_3 \) of all the magnets corresponds to the specification. The level of \(a_2 \), \(a_3 \) and \(b_2 \) harmonics (see Fig. 8) meet the specification.

CONCLUSION

One third of the dipole magnets for the NICA booster synchrotron was successfully passed cryogenic test and can be installed in the tunnel of the accelerator. Magnetic measurements have showed good correspondence of the magnetic field parameters of magnets to the requirements of the specification.

ACKNOWLEDGMENT

Authors would like to thank to those who support our tests at JINR, especially to the staffs of the SCM&T Department of LHEP.

REFERENCES