Abstract
The MAX IV 3 GeV storage ring is presently being commissioned and crucial parameters such as machine functions, emittance, and stored current have either already been reached or are approaching their design specifications [1, 2]. Once the baseline performance has been achieved, a campaign will be launched to further improve the brightness and coherence of this storage ring for typical x-ray users.

INTRODUCTION
The MAX IV 3 GeV storage ring is the first light source to make use of a multibend achromat lattice to reach ultralow emittance [6–12]. As the commissioning of this storage ring progresses, crucial parameters such as machine functions, emittance, and stored current have either already been reached or are approaching their design specifications [1, 2]. Once the design parameters are achieved, the electron beam brightness will be unmatched thanks to top-off injection keeping stored current constant at 500 mA and a bare lattice emittance of 328 pm rad that is expected to reduce towards ≈190 pm rad as additional insertion devices (IDs) are added and ID gaps are closed [13].

In view of the accelerator physics development program for the period following commissioning, the MAX IV Strategic Plan 2013–2026 [14] sets four key upgrade goals for the MAX IV 3 GeV storage ring. The first two are related to an increase of brightness and coherence: lattice/optics improvements and coupling optimization. An increase of brightness and coherence can be achieved by an improved matching of the electron beam to the intrinsic photon beam emerging from an ID [3] as well as by reducing the bare lattice emittance. For the latter, a staged approach has been pursued: a harder focusing optics retaining achromaticity and existing power supplies was detailed in [4]. In this paper we now present an even harder focusing optics retaining only the existing magnets, but calling for new, stronger power supplies.

GLOBAL SEARCH FOR AN IMPROVED LINEAR OPTICS
Following the GLASS procedure [15] using the optics code elegant [16] we first attempt to vary all horizontally focusing quadrupole gradients along with the pole-face strips (PFSs), which allow varying the vertically focusing gradient otherwise provided by the pole shape of the dipoles. GLASS is a brute-force technique for optimizing an accelerator lattice by examining all possible configurations of the linear lattice. GLASS has the advantage that it does not get stuck in a local minimum but has the disadvantage that it becomes computationally prohibitive if there are more than a few adjustable parameters. For a lattice with few degrees of freedom and relatively simple nonlinear dynamics, such as the Canadian Light Source lattice, GLASS is sufficient to explore the entire configuration space [17]. However, for a lattice such as the MAX IV 3 GeV storage ring, GLASS provides a first step only, where we begin a coarse study of possible linear configurations. The GLASS scan can then seed a stochastic optimization algorithm which can do both linear and nonlinear optimization, and would be the natural next step from this study.

For this search we assume maximum focusing gradients provided by either saturation in the magnet or current limitation or temperature increase limits defined by the magnet coils [18] as we assume these are given boundary conditions. We neglect, however, the current limits given by the present power supplies since we assume these can be exchanged in this upgrade phase. For the MAX IV 3 GeV storage ring this amounts to five free parameters. Initially we distinguish between solutions providing \(\beta^* > 4.5 \) m, i.e. at the center of the long straight (in the vicinity of the injection septum) and those that require smaller \(\beta^* \).

In order to speed up the calculations, instead of the standard Tracy-3 lattice, we use a simplified lattice where the slice models for the dipoles with longitudinal and transverse gradients have been replaced with a single hard-edge dipole and the lattice optics retuned in such a way as to preserve crucial optics parameters like beta functions and dispersion. The grid spacing for these five parameters is not equal. Between solutions providing \(\beta^* > 4.5 \) m, i.e. at the center of the long straight (in the vicinity of the injection septum) and those that require smaller \(\beta^* \).

As expected, a decrease of the bare lattice emittance is a necessary but not sufficient condition to maximizing bright-
ness (cf. Fig. 1). For the brightness calculations we use sdds\(brightness\) \[19\] and have assumed a typical MAX IV in-vacuum undulator (IVU) “pmu18p5” \[20\] with an 18.5 mm period, 3.8 m length, and effective \(K\) value of 0.4 to 1.92. We have decided to focus on the 7th harmonic for the production of 1 Å x-rays. Studies have shown this is equivalent to maximizing brightness at the 5th harmonic\(^1\).

First studies have indicated that a bare lattice emittance as low as 99 pm rad (30\% of the design optics value) is achievable, however, this comes at the expense of a peak \(\beta_y\) on the order of 700 m, which is considered unworkable in terms of vertical acceptance and hence lifetime. These same first studies also indicate that substantial increases of brightness is only possible for \(\beta_x^* < 4.5\) m which quite clearly indicates that off-axis injection in its present implementation \[21\] would need to be replaced. Finally, these GLASS studies also reveal that leaking a small amount of dispersion into the long straights \(\eta_x^*\) is necessary to achieve highest brightness (cf. Fig. 3). Typically required value are on the order of \(\eta_x^* \approx 10\) mm which translates to a beam size increase at the source of only 3\%.

In an attempt to retain off-axis injection, a second parameter study was carried out where, in addition to the boundary constraints detailed above, two cuts were added, namely \(\varepsilon_x < 340\) pm rad and \(\beta_x^* > 4.5\) m. Only a single solution emerges with a brightness greater than \(2.2 \times 10^{21}\) photons/s/mm\(^2\)/mmrad\(^2\)/0.1\% BW (cf. Fig. 4). This solution renders a bare lattice emittance of 170 pm rad and \(\beta_y^* \approx 2\) m. However, the peak vertical beta function becomes very large resulting in \(\xi_y = -325\).

On the other hand, there exist solutions that still double the brightness without entailing strong growth of natural chromaticity. As Fig. 5 illustrates, we can find solutions which double the design brightness while retaining natural chromaticity larger than \(-100\). As a consequence, the minimum achievable emittance will be between 100 and 200 pm rad. These solutions are all slightly achromatic, show a strong increase of \(\nu_x\) while \(\nu_y\) remains almost constant, and provide \(\beta_x^* < 8\) m.

Finally, in a third study we investigate two options still compatible with off-axis injection: we require peak \(\beta_y < 50\) m as well as \(\beta_x^* = 7\) m or 6 m. The latter two options both lead to the same 221 pm rad bare lattice emittance, however, the leaked dispersion and vertical beta function at the source are rather different: \(\eta_x^* = 5\) mm or 11 mm as well as \(\beta_y^* = 0.46\) m or 0.54 m. The solution with \(\beta_x^* = 7\) m is further pursued. With this solution we can increase the brightness

\(^1\) For reference, at 500 mA stored current and \(\varepsilon_y = 2\) pm rad \[3\] the design optics gives a brightness of \(8.95 \times 10^{20}\) photons/s/mm\(^2\)/mrad\(^2\)/0.1\% BW and \(7.84 \times 10^{20}\) photons/s/mm\(^2\)/mrad\(^2\)/0.1\% BW for the 7th and 5th harmonics, respectively.
by about 80% compared to the design. Figure 6 shows the optics that result from this solution. The strong suppression of β_x in the long straights as well as the drop in horizontal dispersion that lead to the emittance reduction are clearly visible. Typical beta functions at the ID source points are 39 μm in the horizontal and 1 μm in the vertical. The most

important lattice parameters for the design optics and this modified optics are summarized in Table 1.

Table 1: MAX IV 3 GeV Storage Ring Parameters for the Design Optics and the Modified Optics. Details for the ID-loaded configuration are given in [13].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_0 (bare lattice)</td>
<td>328 pm rad</td>
<td>221 pm rad</td>
</tr>
<tr>
<td>ε_0 (fully ID-loaded)</td>
<td>190 pm rad</td>
<td>130 pm rad</td>
</tr>
<tr>
<td>γ_x, γ_y</td>
<td>42.20, 16.28</td>
<td>47.20, 15.28</td>
</tr>
<tr>
<td>ξ_x, ξ_y (natural)</td>
<td>$-50.0, -50.2$</td>
<td>$-56.5, -127.8$</td>
</tr>
<tr>
<td>J_x</td>
<td>1.85</td>
<td>1.57</td>
</tr>
<tr>
<td>σ_x (natural)</td>
<td>7.69×10^{-4}</td>
<td>7.01×10^{-4}</td>
</tr>
<tr>
<td>α_c (linear)</td>
<td>3.06×10^{-4}</td>
<td>2.05×10^{-4}</td>
</tr>
</tbody>
</table>

NONLINEAR OPTICS

In a next step the nonlinear optics of the upgrade lattice was optimized following the well established procedure used during the original MAX IV design studies [7, 8]. Boundary constraints for the gradients are considered determined by magnet and cabling limits alone [18], power supplies are assumed exchangeable. While the lattice momentum acceptance appears sufficient in terms of Touschek lifetime, the resulting dynamic aperture (DA) is still not quite at the level desired for off-axis injection. The limited DA at the injection point on the ring outside is not an immediate concern because injection occurs from the ring inside, however, the resulting ≈ 5 mm DA on the inside does not offer enough headroom to remain sufficient once all imperfections are included. Further nonlinear optimization is now underway to demonstrate feasibility of the proposed upgrade optics.

CONCLUSIONS & OUTLOOK

A possible upgrade optics has been developed for the MAX IV 3 GeV storage ring, that retains the magnetic lattice while delivering a typical brightness about twice the design value. As IDs are added to the storage ring, this optics will eventually enable a zero-current emittance around 130 pm rad, rendering a brightness about three times higher than in the original design, which presently appears about as low as can be expected without exchanging the magnets.

The linear optics reveals that a split up of the horizontally focusing quadrupole family QF in the arc could allow lowering the heating of the dispersion peaks in the arc, thus possibly further lowering the emittance. Preliminary checks have shown some limited potential, however, a detailed study remains to be performed. In hindsight we have to realize that it would have been advantageous to realize the transverse gradient dipoles with exchangeable pole faces (as was done for the other magnets in the MAX IV 3 GeV storage ring) so that the vertical focusing in the arc could be adjusted by more than the limited range provided by the PF5s (note the reduced J_x in Table 1).

Further optimization can be carried out using stochastic optimization, which can simultaneously optimize the linear and nonlinear dynamics of the lattice. Our GLASS study has mapped out the basic parameter space that can be used to seed such optimization algorithms.

If we are prepared to give up off-axis injection, we can contemplate solutions with substantially lower β_x^* as long as such solutions do not blow up the natural chromaticities. These solutions should allow for maximum brightness within the limits of the existing magnetic lattice. Since the MAX IV 3 GeV storage ring offers a large longitudinal acceptance, on-axis off-energy injection can be contemplated [22]. Such an injection scheme would be compatible with very limited dynamic aperture while at the same time exploiting a key MAX IV advantage: the 100 MHz RF system renders a 10 ns intra-bunch spacing and hence, an on-axis dipole kicker with a rise and fall time of several ns is sufficient for user operation with transparent single-bunch top-off injection. Such a fast kicker incidentally also opens up several possibilities for timing experiments at the storage ring [23–25] without requiring a single-bunch or hybrid fill pattern (e.g. pseudo-single bunch [26]). Furthermore, an aggressive upgrade optics with small dynamic aperture, but compatible with on-axis top-off injection also opens up very interesting possibilities for round beams and/or novel types of insertion devices (e.g. Delta or double-helical undulators).

ACKNOWLEDGMENTS

The authors would like to acknowledge Mikael Eriksen, Les Dallin, Hamed Tarawneh, and Johan Bengtsson for many stimulating discussions. The CLS is supported by CFI, NSERC, NRC, CIHR, Province of Saskatchewan, WD, and the University of Saskatchewan. This research was enabled by the use of computing resources provided by WestGrid and Compute/Calcul Canada.
REFERENCES

