KlyLac CONCEPTUAL DESIGN FOR BOREHOLE LOGGING*

A. V. Smirnov#, M. Harrison, A. Murokh, A. Yu. Smirnov,
RadiaBeam Systems LLC, Santa Monica, USA
E. A. Savin, National Research Nuclear University “MEPhI”, Moscow, Russia
R. Agustsson, S. Boucher, D. Chao, J. Hartzell, K. Junge,
RadiaBeam Technologies LLC, Santa Monica, USA

Abstract

Linac-based system for borehole logging exploits KlyLac approach combining klystron and linac sharing the same electron beam, vacuum volume, and RF network. The conceptual design tailors delivering 3.5-4 MeV electrons within 3.5 inch borehole at ambient temperatures 150 degrees C to replace 137Cs, >1 Ci source used in borehole logging. The linac part is based on a very robust, high group velocity, cm-wave, standing wave accelerating structure. The design concept features i) self-oscillation analog feedback that automatically provides modal stability; ii) ferrite-free isolation of the klystron; and iii) long accelerating section with large (0.3%) frequency separation between adjacent modes; and iv) low-voltage klystron.

INTRODUCTION

Borehole logging tools utilize high-activity 137Cs or 60Co radionuclide sources for densitometry and lithology among other applications. These sources are always “on” imposing significant concerns to radiation safety during handling and transport, potential environmental pollution in case of loss downhole, and security/terrorism activity. The borehole depth of geophysical interest typically exceeds 3000 ft. The X-ray detectors generally operate at ambient temperatures ranging from below 0°C (up-hole calibration) to 175°C or even higher. Borehole tool diameter is usually a fraction (~75%) of a borehole size varying from less than 4” to 10”. For a prospective logging tool diameter is limited by a ~3.5”.

The first linac development for well logging was performed in late 70s in Soviet Union [1]. Extensive work has been done over the past few decades in attempting to adapt linacs for this application, understanding how to characterize and monitor its output [2], and to develop and design a detection system accommodated to a linac with entire tool, including detectors, power conditioning and communications electronics to aid in research into downhole measurements with an intense radiation source [3]. Feasibility of the linac was tested [2] using S-band linac deployed on the ground. The electron beam was transported in the borehole and the corresponding technique for the geological density measurement was developed. In late 80s Haimson Research Corporation made a considerable adaptation of the linac technology to design a linac for logging [4].

RF linacs using conventional technology remain too large and sensitive to background to operate remotely in harsh environment of deep borehole wells at temperatures as high as 150°C and in presence of vibrations (with accelerations 2G and above). The conventional linacs with their automatic frequency control (AFC) system, ferrite-based circulator, and magnetron are not suitable.

KlyLac concept [5,6,7,8] offers an alternative, rugged approach to this problem. Both KlyLac and KlyNac [9,10] concepts are based on a combination of klystron and linac sharing the same vacuum envelop and electron beam source.

The goal of the development is to conceptually design a linac-based source equivalent to ~1-2Ci of 137Cs and capable to operate in a harsh environment as a borehole logging tool at 150°C and cross-section of the housing down to 3.5” without any cooling means. Below we discuss some of the initial developments related to a ~3.8 MeV KlyLac with emphasis made to performance of a ~1.3 m long “jungle-gym” accelerating structure revisited recently [11].

THE TOOL CONCEPT

A KlyLac-based concept of the tool illustrated in Fig. 1 employs RF linac in a standing wave (SW) mode. It allows eliminating RF window, circulator, linac electron gun, and classical AFC. Instead, a simple low-level RF (LLRF) feedback loop may provide automatically adjusted RF self-oscillation [12,13] of the KlyLac at temperature-independent, self-tuned phase and magnitude of accelerating field keeping it optimal without temperature-limited solid state electronics and ferrites. However, such a significant flexibility is possible only if stability conditions are satisfied and a wide enough bandwidth is enabled by both the klystron and linac section.

Figure 1: Simplified schematics of the compact X-ray source for borehole logging using “KlyLac” concept enhanced with a positive feedback loop.
MBK AS THE LINAC DRIVER

A wideband, multi-beam klystron (MBK) has been pre-
designed here for ~9.4 GHz central frequency to study fea-
sibility of the “source” part of the tool. Only a small frac-
tion of central beamlet (~0.5%) of a seven-beam MBK is re-
quired for injection into the linac. Six cavity klystron is mod-
eled with 1D code AJDisk as shown in Fig. 2 with the fol-
lowing parameters: active length: ~16 cm; efficiency: η=30%; output power: 7×100kW; voltage: 38 kV; cathode beam loading: <15A/cm2; beamlet current and diameter: 9.4 A and 5 mm. The klystron cavities are detuned to provide sufficiently wide bandwidth simulated in Fig. 3.

Design of the output cavity presents the most challenging task as it requires addressing simultaneously frequency, external Q-factor ~117 found from AJDisk, and uniformity of gap-to-gap beamlet coupling. We managed to approach the solution for the output cavity with three output ports and three stubs as shown in Fig. 5.

CROSS-ROD SINGLE-SECTION LINAC

The linac part of the tool should accept both RF power and the central part of the beam with energies ~(12-20) kV (see Fig. 2c) in a compact configuration to accelerate ~5 µA beam to ~3.5-4 MeV energies. Besides, frequency separation between adjacent resonances of the linac section to be larger than the change of difference between central frequency of the klystron and the resonant frequency of the section caused by environment (temperature and/or vibrations). This frequency difference is generally caused by difference in geometry between the klystron and acceleration cavities as well as gradient of temperature and deformations along the tool. On the other hand, limited RF power implies large number of cells resulting in reduction of frequency separation. What is why we have chosen a cross-rod type of a ~100 cell structure enabling as large as 0.24c group velocity at still substantial shunt impedance [11].

We consider here two variants of the cross-rod linac section shown in Fig. 6: a) with three RF ports to be connected directly to the MBK; and b) with two ports using the scheme of Fig. 7 to reduce reflections seen by MBK.
The RF fields and S-parameters shown in Fig. 8 and Fig. 9 respectively have been simulated in time domain using simultaneous excitation of the multi-port cavities of Fig. 6. One can see that the modal separation is ~31 MHz that can be compared to 30 MHz frequency walk-off found for a cross-rod cell at βph=0.9 and temperature change from 20°C to 150°C.

We have adopted brazing technology for fabrication of a 6-cell tapered mock-up of the cross-rod structure (see Fig. 11). The measurements showed unloaded Q-factor 3064 vs. 3259 simulated. Field profile measured with bead-pull technique showed excellent agreement with simulations (see Fig. 12) without any tuning.

Energy gain is simulated with ASTRA code [15] for the two-port configuration using the same focusing used in Ref. [11].

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy (award No. DE-SC0015721). The authors appreciate Dr. Ahmed Badruzzaman for his encouraging support of the work potential for well logging in petroleum industry. The authors are grateful to Dr. Arden Dougan, Dr. Bruce Carlsten, and Dr. Sergey Kurennoy for their supportive interest to that development. The authors are thankful to Prof. V.V. Paramonov on the fundamental correction made regarding vacuum simulations.
REFERENCES