STUDY OF INFLUENCE OF DIPOLE AND QUADRUPOLE POWER RIPPLE ON SLOW EXTRACTION FOR XiPAF

Q. Zhang1,2,3, G. R. Li1,2,3, H. J. Yao1,2,3, S. X. Zheng†,1,2,3, X. L. Guan1,2,3, X. W. Wang1,2,3, Z. Y. Lin1

1Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China, 2Laboratory for Advanced Radiation Sources and Application, Tsinghua University, Beijing 100084, China, 3Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Abstract

The third resonant slow extraction and RF-Knockout technology was adopted for XiPAF, which was designed for proton single event effects. The separatrix of the stable region fluctuates during slow extraction due to power ripple, which affects the extracted beam uniformity and the extraction efficiency. The influence of dipole and quadrupole power ripple was explored theoretically and simulated via MPI parallel multi-particle program. A method for making the beam less sensitive to power ripple is proposed and verified by simulation.

INTRODUCTION

The Xi’an Proton Application Facility (XiPAF) is currently under construction for research on the single event effect (SEE). It consists of a 7 MeV linac injector, a synchrotron (60–230 MeV) and two experimental stations \cite{1}. The parameters of XiPAF related to extraction are shown in Table 1. To satisfy the requirements of the SEE experiments, the RF-KO slow extraction method should be adopted to obtain a uniform spill. Power supply ripple, however, causes the extracted spill to fluctuate.

This paper introduces the C++ code Li-Tracker, which can be used to simulate the third order slow extraction process. The influence of the quadrupoles/dipoles on extracted spill was investigated in this study by computer simulation, as discussed below.

Table 1: XiPAF Synchrotron Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection Energy</td>
<td>7</td>
<td>MeV</td>
</tr>
<tr>
<td>Extraction Energy</td>
<td>60–230</td>
<td>MeV</td>
</tr>
<tr>
<td>Circumference</td>
<td>30.9</td>
<td>m</td>
</tr>
<tr>
<td>Maximum Repetition Rate</td>
<td>0.5</td>
<td>Hz</td>
</tr>
<tr>
<td>Maximum β_x/β_y</td>
<td>5.8/6.0</td>
<td></td>
</tr>
<tr>
<td>Extraction Time</td>
<td>1–10</td>
<td>s</td>
</tr>
<tr>
<td>ν_x/ν_y</td>
<td>1.678/1.794</td>
<td></td>
</tr>
</tbody>
</table>

LI-TRACK CODE FOR EXTRACTION

The Li-Track code is a parallel multi-particle tracking program based on MPI. It consists of the total of XiPAF components. The initial coordinates of particles form the input of the program; if the lattice in the program is altered, it can be used for other accelerators as well. Figure 1 shows the simulation result of an extracted spill in Li-Track code. The dual FM method \cite{2} and AM function \cite{3} were applied to make the extracted spill more uniform. The related parameters are listed in Table 2.

Table 2: Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction Energy</td>
<td>60–230</td>
<td>MeV</td>
</tr>
<tr>
<td>Revolution Frequency</td>
<td>5.78</td>
<td>MHz</td>
</tr>
<tr>
<td>Center Frequency</td>
<td>3.92</td>
<td>MHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>37</td>
<td>kHz</td>
</tr>
<tr>
<td>AM Parameter r_0^2</td>
<td>3.44×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>AM Parameter σ_0^2</td>
<td>4.4×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>τ_{prac}/τ_{ext}</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Extraction spill structure (extracted particles recorded every 5780 turns corresponding to 1 KHz sampling frequency).

In this simulation, 1.2×10^4 particles were tracked for 5.78×10^6 turns (equivalent to 1 s). Eleven hours were needed to complete the simulation using 120 CPU.

EFFECT OF QUADRUPOLE MAGNET

The stable area of the third order resonance is proportional to δQ^2, where

$$\delta Q = Q_{\text{particle}} - Q_{\text{resonance}}$$

The lattice tune is mainly determined by the quadrupoles. Ripple in the quadrupole power leads to disturb-
ance, which then changes the stable area of the resonance and causes a modulation in the extracted spill.

Consider a thin-lens quadrupole with field errors $k(s)$ and the integrated strength of field error $\Delta K_1 ds = \Delta K_1 L$, where L is the length of quadruples. The tune shift due to the power ripple of quadrupoles can be expressed as follows:

$$\Delta \nu = \frac{L \beta}{4\pi} \Delta K_1$$

(a)

![Intensity vs. Bin](image1)

(b)

![Intensity vs. Bin](image2)

(c)

![Intensity vs. Bin](image3)

Figure 2: Simulation results with QF ripple: (a) no ripple; (b) $\Delta I = 60$ ppm; (c) $\Delta I = 500$ ppm.

For the Focusing Quadrupole (QF), $L = 0.24m$, $\beta = 5.8m$, and the XiPAF consists of 6 QFs, so the tune shift due to the QF can be calculated as follows:

$$\Delta \nu = 6 \times \frac{0.24 \times 5.8}{4\pi} \Delta K_1 = 0.67 \Delta K_1$$

$$\Delta I = \frac{\Delta \beta}{\beta} = \frac{\Delta K_1}{K_1}, \text{ so}$$

$$\Delta \nu = 0.67 \Delta K_1 = 0.67 \frac{\Delta I}{I_{\text{tot}}} = 1.57 \frac{\Delta I}{I_{\text{tot}}}$$

The relation between the power ripple of Defocusing Quadrupoles and tune shift can be obtained similarly:

$$\Delta \nu = -0.15 \frac{\Delta I}{I_{\text{tot}}}$$

Extraction with power ripple was simulated to determine the limitation for the power ripple, which was assumed to be a sinusoidal function. Figure 2 shows the QF simulation result; Figure 3 shows the result for QD. The ripple frequency was set to 50 Hz.

(a)

![Intensity vs. Bin](image4)

(b)

![Intensity vs. Bin](image5)

Figure 3: Simulation results with QD ripple: (a) $\Delta I = 60$ ppm; (b) $\Delta I = 500$ ppm.

The simulation results indicate that when $\Delta I = 60$ ppm for QF, the extracted spill time structure is similar to that with no ripple. In other words, $\Delta I = 60$ ppm is tolerable for QF. The tolerable ripple of QD can be up to 500 ppm, because the tune is much less sensitive to the ripple of QF.

INFLUENCE OF DIPOLE MAGNET

The influence of dipole power converter ripple on extraction can be analyzed from two perspectives: The closed orbit and the particle’s tune.
The influence on the closed orbit can be calculated as follows:

\[u(s) = \theta \frac{\sqrt{\beta_0 \beta}}{2 \sin \pi \nu} \cos(\pi \nu s - \varphi(s) - \varphi(s_n)) \]

If \(\frac{\Delta \nu}{\nu} \) for the dipole power converter reaches to 100 ppm, the fluctuation of the closed orbit at the entrance of the electrostatic septum is 0.225 mm. Compared to the spiral step (5 mm), the fluctuation can be negligible.

The influence of dipole magnet ripple on the tune merits further research.

MAKING BEAM LESS SENSITIVE TO POWER RIPPLE

The area of the stable region can be expressed as follows:

\[A = \frac{48 \sqrt{3} \pi}{s^2} (\Delta Q)^2 \pi \]

Assuming that the tune shift resulting from the power converter ripple is \(dQ \), the area changes to:

\[\frac{\Delta A}{A} = \frac{(\Delta Q + dQ)^2 - \Delta Q^2}{\Delta Q^2} \approx 2 \frac{dQ}{\Delta Q} \]

A large difference between tune and resonance is beneficial to making the extracted spill less sensitive to power supply ripple.

![Figure 4: Simulation result for tune = 1.669.](image)

(a) no ripple

(b) \(\frac{\Delta \nu}{\nu} = 60 \text{ ppm} \)

![Figure 5: Simulation result for tune = 1.690.](image)

The results indicate that modulation caused by tune fluctuation was more severe at tune = 1.669 than at tune = 1.690. However, a larger difference between tune and resonance means a stronger sextupole so as to make the stable region constant. The nonlinear effect due to the higher strength of sextupole must be taken into account.

CONCLUSION

This paper introduced a parallel, multi-particle tracking program. The relationship between the tune shift and ripple of power converters was given quantitatively. According to a series of simulation results, \(\frac{\Delta \nu}{\nu} = 60 \text{ ppm} \) for the QF power converter and \(\frac{\Delta \nu}{\nu} = 500 \text{ ppm} \) for the QD converter are acceptable. Comparison between tune = 1.669 and 1.690 further indicated that greater distance from the resonance makes the extracted beam less sensitive to power supply ripple.

REFERENCES
