JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

RIS citation export for TUPIK032: AWAKE Proton Beam Commissioning

AU - Schmidt, J.S.
AU - Barrientos, D.
AU - Barros Marin, M.
AU - Biskup, B.
AU - Boccardi, A.
AU - Bogey, T.B.
AU - Bohl, T.
AU - Bracco, C.
AU - Cettour Cave, S.
AU - Damerau, H.
AU - Fedosseev, V.
AU - Friebel, F.
AU - Gessner, S.J.
AU - Goldblatt, A.
AU - Gschwendtner, E.
AU - Jensen, L.K.
AU - Kain, V.
AU - Lefèvre, T.
AU - Mazzoni, S.
AU - Molendijk, J.C.
AU - Moody, J.T.
AU - Pardons, A.
AU - Pasquino, C.
AU - Rey, S.F.
AU - Rieger, K.
AU - Vincke, H.
AU - Wehrle, U.
ED - Schaa, Volker RW
ED - Arduini, Gianluigi
ED - Pranke, Juliana
ED - Seidel, Mike
ED - Lindroos, Mats
TI - AWAKE Proton Beam Commissioning
J2 - Proc. of IPAC2017, Copenhagen, Denmark, 14–19 May, 2017
C1 - Copenhagen, Denmark
T2 - International Particle Accelerator Conference
T3 - 8
LA - english
AB - AWAKE will be the first proton driven plasma wakefield acceleration experiment worldwide. The facility is located in the former CNGS area at CERN and will include a proton, laser and electron beam line merging in a 10 m long plasma cell, which is followed by the experimental diagnostics. In the first phase of the AWAKE physics program, which started at the end of 2016, the effect of the plasma on a high energy proton beam will be studied. A proton bunch is expected to experience the so called self-modulation instability, which leads to the creation of micro-bunches within the long proton bunch. The plasma channel is created in a rubidium vapor via field ionization by a TW laser pulse. This laser beam has to overlap with the proton beam over the full length of the plasma cell, resulting in tight requirements for the stability of the proton beam at the plasma cell in the order of ~ 0.1 mm. In this paper the beam commissioning results of the ~810 m long transfer line for proton bunches with 3·10¹¹ protons/bunch and a momentum of 400 GeV/c will be presented with a focus on the challenges of the parallel operation of the laser and proton beam.
CP - Geneva, Switzerland
SP - 1747
EP - 1750
KW - proton
KW - plasma
KW - laser
KW - alignment
KW - experiment
DA - 2017/05
PY - 2017
SN - 978-3-95450-182-3
DO - 10.18429/JACoW-IPAC2017-TUPIK032
UR - http://jacow.org/ipac2017/papers/tupik032.pdf
ER -