COMBINATION OF DENSITY AND ENERGY MODULATION IN MICROBUCKING ANALYSIS

Cheng-Ying Tsai, Department of Physics, Virginia Tech, VA 24061, USA
Rui Li, Jefferson Lab, Newport News, VA 23606, USA

Abstract

Microbunching instability (MBI) has been one of the most challenging issues in the transport of high-brightness electron beams for modern recirculating or energy recovery linac machines. Recently we have developed and implemented a Vlasov solver [1] to calculate the microbunching gain for an arbitrary beamline lattice, based on the extension of existing theoretical formulations for the microbunching amplification from an initial density perturbation to the final density modulation. For more thorough analyses, in addition to the case of (initial) density modulation, we extend in this paper the previous formulation to more general cases, including energy to density, density to energy and energy to energy amplifications for a recirculation machine. Such semi-analytical formulae are then incorporated into our Vlasov solver, and qualitative agreements are found when the semi-analytical Vlasov results are compared with particle tracking simulations using ELEGANT [5].

INTRODUCTION

Theoretical formulation of MBI has been developed both in single-pass [2-4] and in storage-ring [6, 7] systems. Hetfleis et al. [2] derived a linear integral equation in terms of the density modulation (or, the bunching factor). Huang and Kim [3] obtained the integral equation in a more compact way and outlined the microbunching due to initial energy modulation. This has become the building block for this work.

To quantify MBI in a general transport system, we estimate the microbunching amplification factor (or, gain) along the beamline. For a long transport line of a recirculation machine, people usually treat the microbunching problem as a single-pass system. More generally, concatenations of sub-beamline sections were treated and the overall microbunching gain is speculated as the multiplication of gains from individual subsections [3, 8]. Though this concatenation approach seems intuitive, we need a more rigorous and detailed justification of the validity.

In this paper, we consider a more generalized situation where both initial density and energy modulations can be present and derive a set of integral equations for the microbunching evolution in terms of density and energy modulations along a general beamline. Then we study an example of a recirculating beamline. From the simulation results, we have some interesting observations and have found such combined analysis of density and energy modulation can give more information than the previous treatment. Comparison of the results with ELEGANT tracking has given qualitative agreement. Possible extension of this study to include transverse microbunching is underway.

THEORY

From the (linearized) Vlasov equation, the evolution of the phase-space distribution function is governed by [3]

\[f(X, s) = f(X_0) - \int_0^s \frac{df}{dz} \bigg|_{X(z)} \frac{d\delta}{d\tau} \bigg| \right) \]

(1)

where the energy change due to collective effect can be induced by density modulation

\[\frac{d\delta}{d\tau} = \frac{N_0}{\gamma} \int_0^s \frac{dk_1}{2\pi} Z(k; \tau) b(k; \tau) e^{ik_1s}. \]

(2)

Here \(f \) is the beam phase-space distribution function, \(X(s) = (x, x', z, \delta; s) \) the phase-space variables, \(N \) the number of particles, \(\gamma \) the Lorentz factor, \(Z(k) \) the longitudinal impedance per unit length, \(k \) the modulation wavenumber, and \(b \) the density modulation.

We then defined two quantities for subsequent analysis:

\[b(k; s) = \frac{1}{N} \int dX f(X; s) e^{-ik(s_1)}, \]

(3)

as the density modulation (or, bunching factor), and

\[p(k; s) = \frac{1}{N} \int dX(s) f(X; s) e^{-ik(s_1)}, \]

(4)

as the energy modulation.

In the absence of collective effect, we have \(f(X; s) = f_0(X_0) \), i.e. the distribution function can be completely determined by the initial distribution. Assume initial unperturbed phase-space distribution is of the form

\[f_0(X_0) = \frac{n_0}{2\pi \epsilon_0 \sqrt{2\pi \sigma}} e^{-\frac{1}{2} \left(x - \mu_0 \right)^2} \frac{1}{2\pi \epsilon_0 \sqrt{2\pi \sigma}} e^{-\frac{1}{2} \left(x' - \mu_0 \right)^2}, \]

(5)

where \(n_0 \) is the line density, \(\epsilon_0 \) and \(\sigma \) are the emittance and energy spread of the beam, \(\epsilon_0 \) and \(\sigma \) are initial Twiss parameters. For simplicity, assume no chirp on the beam.

Equations (3) and (4) can be analytically obtained to be

\[b_0(k; s) = b(k_0; 0) \{ \text{L.D.} : s \} \]

(6)

as the density modulation due to initial density modulation in the absence of collective effect, where

\[\{ \text{L.D.} : s \} \equiv e^{-\frac{1}{2} \left(z_{0}(k_{0} ; 0) - z_{0}(k_{0} ; s) \right)^{2} / \left(\pi \sigma_{0}^{2}(k_{0}) \right) \} \frac{1}{2} \frac{2 \sigma_{0}^{2}(k_{0})}{2 \sigma_{0}^{2}(k_{0})} \]

(7)

Here \(R_{i} \) denote standard linear transport matrix elements.

Similarly, we have, in the absence of collective effect, \(b_0(k; s) \) as density modulation due to initial energy modulation; \(p_0'(k; s) \) as energy modulation due to initial density modulation; \(p_0''(k; s) \) as energy modulation due to initial energy modulation.
In the presence of collective effect, the governing equation Eq. (1) can be re-written in terms of density or energy modulations:

\[b(k,s) = b_k(s) - \frac{iK(s)}{N} \int \tau R_{(s)}(\tau \rightarrow s) \left[\frac{dX}{d\tau} f_s(X) e^{-i\omega_{(s)}(\tau)\tau} \right] \left(\frac{db}{d\tau} \right) \]

and

\[p(k,s) = p_k(s) - \frac{iK(s)}{N} \int \tau R_{(s)}(\tau \rightarrow s) \left[\frac{dX}{d\tau} f_s(X) e^{-i\omega_{(s)}(\tau)\tau} \right] \left(\frac{dp}{d\tau} \right) \]

(8)

After linearizing Eqs. (8) and (9) and neglecting higher order terms in the integration, we can obtain four integral equations. Since the integral equations are linear in \(b(k,s) \) and \(p(k,s) \), they can be cast into a vector-matrix notation,

\[
\begin{bmatrix}
 b^s \\
 b^e \\
 p^s \\
 p^e
\end{bmatrix} = \begin{bmatrix}
 (1 - K)^{-1} & 0 & 0 & 0 \\
 0 & (1 - K)^{-1} & 0 & 0 \\
 (M - L)(1 - K)^{-1} & 0 & 1 & 0 \\
 0 & (M - L)(1 - K)^{-1} & 0 & 1
 \end{bmatrix} \begin{bmatrix}
 b^0 \\
 b'_0 \\
 p^0 \\
 p'_0
\end{bmatrix}
\]

where

\[K = iK(s) \frac{I(\tau)}{\gamma I_d} R_{(s)}(\tau \rightarrow s) Z(k(\tau);\tau) \{ \text{L.D.;} \tau, s \} \]

(10)

\[M = i\sigma^2_k(s) \frac{I(\tau)}{\gamma I_d} Z(k(\tau);\tau) \{ \text{L.D.;} \tau, s \} \]

(11)

\[L = \frac{I(\tau)}{\gamma I_d} Z(k(\tau);\tau) \{ \text{L.D.;} \tau, s \} \]

(12)

Here \(I(\tau) \) is the beam current at \(s = \tau \), and \(I_d \) is Alfvén current,

\[\begin{bmatrix} \text{L.D.;} \tau, s \end{bmatrix} \equiv e^{-\frac{L^2(s)}{2} V_{(s)} W_{(s)} - \frac{L^2(s)}{2} W_{(s)} V_{(s)}} e^{-\frac{L^2(s)}{2} W_{(s)} V_{(s)}} \]

(9)

The concept of microbunching gain can in general be extended to have the four combinations, \(b^e/b'_e(0), b^s/b'_s(0), p^e/p'_e(0) \), and \(p^s/p'_s(0) \), but hereafter we would use density and energy modulations \(b(k,s) \) and \(p(k,s) \) unless mentioned otherwise. It is worth mentioning that the matrix equation can be reduced to that in Ref. [9] for \(\mathcal{O}(K) \ll 1 \).

CONCATENATION OF BEAMLINE

In this section, we would apply the generalized formulation to an example of recirculating machine [10]. This recirculating beamline consists of two arcs, for which are based on the original design in Ref. [11]. One of the arcs is composed of 4 triple-bend-achromatic (TBA) units. The arcs are achromatic and quasi-isochronous. Let us separate this machine into four pieces: S1, ARC1, S2, and ARC2 (see Fig. 1). In this example, the beam is assumed 150 MeV in energy, peak bunch current 60 A, with normalized emittance 0.4 \(\mu \)m and relative energy spread 1.33 \times 10^{-5}. Figure 2 shows Twiss and momentum compaction functions along the beamline. Below we would estimate both the density and energy modulations at the end of the beamline but begin from different sub-beamline sections, and compare all of the obtained results from different concatenations. Let us consider the simplest case shown in Fig. 3, where the modulations evolve in the absence of collective effects (i.e. pure optics). The concatenations of the matrices \(T \) from sub-beamline sections match well with that of the start-to-end case, in our intuitive expectation. Now we include steady-state CSR [12,13], which only occurs in ARC1 and ARC2. Figure 4 shows the density and energy modulation spectra at the end of the beamline. From the figure, we can see differences between red/green and blue/black curves. We claim that the differences originate from correlation between ARC1 and ARC2. That is to say, for S2-ARC2 case, the initial conditions used in our analysis \([b, p]^T\), given at the exit of ARC1, are not sufficient to fully describe the CSR interaction occurred upstream in ARC1. To confirm, we artificially switch off the CSR in ARC1 (but retain the CSR in ARC2) and find all the spectra of density and energy modulations from different concatenations agree well, as shown in Fig. 5.
In this paper we have already extended the existing single-pass microbunching analysis from density to density modulation to the combination of both density and energy modulations throughout a beamline. The generalized formulation enables us to gain more understanding of the microbunching development along a beamline transport system. Our investigation of a particular recirculating machine indicates that the microbunching gain varies along the beamline transport system. This will be the subject of our next study.

To end this section, we consider a simple case with only initial density modulation. The microbunching gains evaluated from different concatenations are compared with the naïve multiplicative approach, shown in Fig. 8. It appears that the naïve approach gives an underestimate to the overall microbunching gain along the beamline.

SUMMARY AND DISCUSSION

In this paper we have already extended the existing single-pass microbunching analysis from density to density modulation to the combination of both density and energy modulations throughout a beamline. The generalized formulation enables us to gain more understanding of the microbunching development along a beamline transport system. Our investigation of a particular recirculating machine indicates that the microbunching gain varies along the beamline transport system. This will be the subject of our next study.

To end this section, we consider a simple case with only initial density modulation. The microbunching gains evaluated from different concatenations are compared with the naïve multiplicative approach, shown in Fig. 8. It appears that the naïve approach gives an underestimate to the overall microbunching gain along the beamline.

For further investigation of where the difference originates, it was found a microbunching structure resides in (x’ , z) at the exits of ARC1 and of the beamline, as shown in Fig. 7. Indeed such structure is not included in the existing microbunching analysis. Further investigation is under way. This will be the subject of our next study.

REFERENCES

[9] R. Bosch et al., Multistage gain of the microbunching instability, FEL’10 (WEPB49)

[14] In Fig. 7, it can be seen that the left figure features higher harmonic components, which violate an assumption of the above formulation. It occurs when the microbunching gain is large. Even so, it can be considered qualitatively consistent to our Vlasov analysis.