TOWARDS BEAM-DYNAMICS SIMULATIONS INCLUDING MORE REALISTIC FIELD DESCRIPTIONS FOR THE HESR

J. Hetzel∗1, U. Bechstedt, J. Böker, A. Lehrach1,2, B. Lorentz, R. Tolle
Institute for Nuclear Physics 4 (IKP-4), Forschungszentrum Jülich, Germany
1also at Physics Institute III B, RWTH Aachen University, Germany
2also at JARA-FAME (Forces and Matter Experiments), Jülich Aachen Research Alliance, Germany

Abstract

The High Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) in Darmstadt (Germany). The HESR is designed for antiprotons with a momentum range from 1.5 GeV/c to 15 GeV/c, but will as well be suitable to provide heavy ion beams with a momentum range from approximately 0.6 GeV/c to 5.8 GeV/c. To guarantee smooth operation it is crucial to verify and improve the design with beam-dynamics simulations. Particularly the dynamic aperture is calculated as a measure of quality. Complementary to previous beam dynamics calculations based on frequency map analysis [1], the dynamic aperture is calculated using a variant of the Lyapunov exponent. The first bending and focusing magnets have been delivered and the magnetic fields measured recently. So the assumed values of the the multipole imperfections used so far in the machine model are now replaced by values based on field measurements.

INTRODUCTION

Subject of this paper is the estimation of the short term dynamic aperture for the HESR [2]. All calculations are based on the so-called injection lattice for antiprotons. Here the kinetic energy of the antiprotons at injection is 3 GeV, the transition energy of the lattice is set to γγ = 6.2. The calculations are based on tracking studies performed with the PTC module of MAD-X [3]. Objective of the current studies is a tune scan for this setting to identify areas of large dynamic aperture, i.e. minimal influences of non-linearities. The main sources for these non-linearities, besides the sextupole fields for chromaticity correction, are the harmonic imperfections of the bending dipoles and the quadrupoles. Both types of magnets are in the series production state. Thus measurements of the harmonic content of the elements as quality assurance, as well as basis for the tracking studies are performed.

MEASUREMENT OF THE HARMONIC CONTENT

Immediately after production of each of the in total 84 normal conducting quadrupoles a measurement of the harmonic content is performed by the manufacturer. This is done by the use of a rotating coil. The used layout is a radial coil with analogue bucking of the main field component. The analysis of the measured data is performed following [4], including rotational and feed down correction to correct for misalignments. The measurements result in a description of the transverse field of the quadrupole integrated along the longitudinal axis of the element:

$$B_y + iB_x = \sum_{n=1}^{\infty} (B_n + iA_n) \left(\frac{x + iy}{r_0} \right)^{n-1}. \quad (1)$$

Here B_n and A_n are the so-called multipole coefficients at reference radius r_0. Usually they are normalized to the main field component B_N. In case of a quadrupole this results in

$$b_n + ia_n = \frac{B_n + iA_n}{B_2} \cdot 10^4. \quad (2)$$

The measured harmonic content averaged over the 33 elements that are measured up to now is shown in Fig. 1. Based on the measured values as well as the measured standard deviation from element to element a random set of multipole components is generated for each of the 84 quadrupoles in the HESR lattice. This set is used later on to describe the element imperfection in the tracking studies. The measured values are not used directly for two reasons: First of all up to now not all elements are produced not to mention measured,
second the statistically distributed harmonic coefficients tend to change if the element is disassembled and reassembled e.g. to insert the beam tube. The set of the randomized multipoles can be varied by choosing a different random seed.

The bending magnets (in total there will be 44 normal con-

duction sector dipoles) cannot be measured by the use of rotating coils as the elements are bent. Instead it is planned to use a Hall device that moves through the magnet. This device measures the tangential as well as the azimuthal components of the field on the surface of a bent cylinder. The bending radius corresponds to the curvature of the magnet. Again a description in multipole components as in Eq. (1) is desired. This can be achieved by a Fourier transformation of the measured values.

As the device is still under development, the basis for the multipole components of the dipoles in the beam dynamics simulation is the proof of concept measurement with a single Hall probe that is described in [5]. The result of this measurement is shown in Fig. 2. For the simulation the multipoles are again randomized according to the measured values.

TRACKING

Starting from the linear lattice without disturbances by the multipole errors, a tune scan is performed. For a tune range $Q_x, Q_y \in [7.57, 7.76]$ a geometric acceptance of $A_x, A_y > 15$ mm mrad can be achieved without completely altering the linear lattice. The resulting acceptances are given in Fig. 3. In this range the dynamic aperture is estimated by tracking including the multipole errors. As the area is rather large only a short term tracking with 1000 turns per initial point in phase space is performed. The settings of the tracking environment are summarised in Table 1.

Table 1: Tracking Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking Environment</td>
<td>PTC module of MAD-X</td>
</tr>
<tr>
<td>Description of Elements</td>
<td>Matrix module-MAD-X</td>
</tr>
<tr>
<td>Slices per Element</td>
<td>8</td>
</tr>
<tr>
<td>Included Multipoles</td>
<td>$n \leq 10$</td>
</tr>
<tr>
<td>Hamiltonian</td>
<td>approximated</td>
</tr>
<tr>
<td>Number of Tracked Turns</td>
<td>1000</td>
</tr>
</tbody>
</table>

Lyapunov Indicator

As an estimate for the dynamic aperture a modified version of the Lyapunov indicator λ as introduced in [6] is used:

$$\lambda(n) := \frac{\bar{d}_{n/2,n} - \bar{d}_{0,n/2}}{\bar{d}_{n/4,3n/4}}.$$

(3)

Here n denotes the number of tracked turns and $\bar{d}_{i,j}$ is the average distance of two initially close-by particles within turns i and j.

As a conservative estimate for the dynamic aperture the tracked motion is considered as chaotic if $\lambda(n)$ exceeds 1 during the tracking. Hereby the first 100 turns are neglected to suppress transient effects. So the motion is considered to be stable if

$$\lambda(n) \leq 1, \forall n \in (100, 1000].$$

(4)

For each point in tune space an initial point in phase space with

$${\bar{x}}_i = \begin{pmatrix} x_i \\ p_{x,i} \\ y_i \\ p_{y,i} \end{pmatrix} = 0.01 \cdot \begin{pmatrix} a_x \cdot \sqrt{A_x/y_x(s = 0)} \\ 0 \text{ mrad} \\ a_y \cdot \sqrt{A_y/y_y(s = 0)} \\ 0 \text{ mrad} \end{pmatrix}$$

(5)

is set. Initially the coefficients a_x and a_y are set to 1; $s = 0$ refers to the longitudinal starting point of the tracking. If...
the stability criterion Eq. (4) is not violated, \(a_x \) or \(a_y \) are increased by approximately 1.5. As sketched in Fig. 4 in total three series of tracking are performed: One where just \(a_x \) is increased, one where \(a_x \) and \(a_y \) are increased simultaneously and one where just \(a_y \) is increased. As the tracking serves just as a conservative estimate, the minimal radius \(r = \sqrt{x_i^2 + y_i^2} \) at which the motion, according to Eq. (4), changes from stable to chaotic defines the dynamic aperture.

Results

The results of the tune scan are shown in Fig. 5. There, for each pair of horizontal and vertical tunes the dynamic aperture is estimated. The results are also compared to the tune resonances up to multipole order \(n = 6 \). As expected, the tunes with low dynamic aperture coincide with these resonances. Additionally, it can be seen that the tunes near the coupling resonance \(Q_x = Q_y \) can not be reached during tracking. This is due to the non-vanishing skew quadrupole component of the bending magnets. In previous studies for the HESR, such as [1], this was not seen, as skew multipole components of the bending magnets were not considered. Tune combinations with large dynamic aperture identified in Fig. 5 serve as initial points for future investigations, such as long term tracking.

CONCLUSION

The model of the HESR could be extended to include realistic field descriptions based on measurements. Short term tracking and application of the Lyapunov criterion, Eq. (4), are appropriate to identify restrictions to the acceptance limit caused by non-linearities.

REFERENCES

