HIGH-HARMONIC MM–WAVE FREQUENCY MULTIPLICATION USING A GYROCON–LIKE DEVICE

F. Toufexis, S.G. Tantawi, A. Jensen, V.A. Dolgashev, A. Vrielink, M.V. Fazio, SLAC, Menlo Park, CA 94025
P. Borchard, Dymenso LLC, San Francisco, CA 94115

1Also at Department of Electrical Engineering, Stanford University, Stanford, CA 94305

Abstract

Traditional linear interaction RF sources, such as Klystrons and Traveling Wave Tubes, fail to produce significant power levels at millimeter wavelengths. This is because their critical dimensions are small compared to the wavelength, and the output power scales as the square of the wavelength. We present a vacuum tube technology, where the device size is inherently larger than the operating wavelength. We designed a low–voltage mm–wave source, with an output interaction circuit based on a spherical sector cavity. This device was configured as a phased-locked frequency multiplier. We report the design and cold test results of a proof-of-principle fifth harmonic frequency multiplier with an output frequency of 57.12 GHz.

INTRODUCTION

Millimeter–waves refer to the part of the frequency spectrum above 50 GHz up to 1 THz. This part of the spectrum is still unexploited because of the lack of compact mm-wave sources [1–4] – especially amplifiers – that are able to provide substantial amount of power. Compact high power mm-wave sources will enable several applications such as spectroscopy, high–resolution medical imaging, navigation through sandstorms, spectroscopic detection of explosives, high bandwidth, low probability of intercept communications, and space radars for debris tracking of objects less than 5 cm that present hazards to space assets, such as communications satellites.

Gyrotrons and gyro–amplifiers [5–9] are powerful mm-wave sources; however, they require a superconducting magnet which renders these devices very large and impractical for many applications. Incarnations of Gyrotrons that operate at higher harmonics are the Large Orbit Gyrotrons [10–13] and Gyro–multipliers [14–17]. Frequency multiplying tubes, such as Gyrocons [18–24] and Magnicons [23,25–32], are an attractive alternative to conventional vacuum amplifiers. In such tubes, a continuous electron beam is helically deflected, by exciting two orthogonal polarizations in a TM_{11} deflecting cavity. The beam arrives at the output cavity as a wave of electron current rotating around the axis of symmetry, and excites a traveling electromagnetic wave. The synchrotron condition is given by $\omega_{RF} = m\omega_{LO}$, where ω_{LO} is the angular frequency of the deflecting cavity, ω_{RF} is the angular frequency of the generated signal in the output cavity, and m is the number of azimuthal variations of the target eigenmode in the output cavity. However, to our knowledge the Gyrocons that have been experimentally demonstrated only operated with $m = 1$, and there is only a theoretical analysis for $m = 2$ [24]. The output cavities of these devices employed beam pipes shielded with aluminum foils, which required a relativistic beam. Furthermore, a complicated magnetic field profile was necessary to guide the beam through the beam pipes. Scaling Gyrocons to higher frequencies requires reducing the current dramatically, thus limiting the output power to levels already achieved with traditional devices.

We have developed a new Gyrocon–like mm–wave source, with an output interaction circuit based on a spherical sector cavity. We have designed, manufactured and hot-tested a proof–of–principle device, and in this work we report the design and cold–test data of the input and output circuits.
RF DESIGN

For the output cavity we used a spherical sector cavity that supports a whispering gallery TM_{nm} mode in the r–direction (in spherical coordinates), of high azimuthal variation, suitable for interaction with an electron beam also traveling in the r–direction, without any further redirection. The field profile of such modes is described in [33]. As shown in Fig. 1, the mode is well confined at the top of the resonator, allowing the bottom to be open for the electron beam to enter. This opening is larger than the wavelength, which distinguishes our approach from traditional devices having beam pipes being small fractions of the wavelength.

Combining helical beam deflection at a low frequency with the spherical sector resonator as the output cavity yields several advantages over existing solutions. As the beam travels in the r–direction, helically deflected, the effect of space charge decreases. Since the frequency context is not encoded as longitudinal bunching, space charge is not a limiting factor any more, in contrast to devices like klystrons or TWTs. We further observed, that when multiplying frequency from X–band (8–12 GHz) to V–band (50–75 GHz) or W–Band (75–110 GHz), the dimensions of the output resonator allow (in spherical coordinates), of high azimuthal variation, suitable for interaction with an electron beam also traveling in the r–direction, without any further redirection. The field profile of such modes is described in [33]. As shown in Fig. 1, the mode is well confined at the top of the resonator, allowing the bottom to be open for the electron beam to enter. This opening is larger than the wavelength, which distinguishes our approach from traditional devices having beam pipes being small fractions of the wavelength.

We further observed, that when multiplying frequency from X–band (8–12 GHz) to V–band (50–75 GHz) or W–Band (75–110 GHz), the dimensions of the output resonator allow for a device that is small enough that beam expansion is minimal, even without any focusing, but large enough to allow for significant current to go through. There is, therefore, no need for a narrow beam pipe or any sort of magnetic focusing or beam guidance compared to Gyrocons. Further, limiting m to be an odd number allows coupling of this resonator using two orthogonally placed waveguides and a hybrid coupler that combines the two outputs of the resonator to one, as shown in Fig. 1.

We designed, manufactured and cold–tested the vacuum tube frequency multiplier shown in Fig. 3, which multiplies an input frequency of 11.424 GHz times 5, producing 57.12 GHz. The tube is designed to operate at a beam voltage of 60 kV and current of 8.8 A. Using an in–house particle tracking code, we estimated that the input power required at X–Band is in the order of 70 kW, and the expected output power at V–Band is in the order of 60 kW with a beam to RF efficiency of 12%.

The initial design point was $m = 5$ and $n = 21$ because the radius of the cavity is approximately 2 cm, which is small enough to prevent significant expansion of the electron beam. We optimized the cone angle so that there is no parasitic mode within 500 MHz. Since the output cavity also acts as the beam collector, we added a cone made of molybdenum, so that when there is no RF in the deflecting cavity, the collector is not damaged. A biplanar hybrid coupler [34] is used to create the correct phase difference. However, this coupling scheme breaks the degeneracy of the deflecting modes. To improve the symmetry of the modal fields, we added two terminated waveguide pieces with coupling irises. The size of these waveguide pieces was chosen to prevent any resonances near the frequency of interest. Table 1 summarizes the designed and measured properties of the two degenerate eigenmodes in the output cavity.

The input deflecting cavity shape was optimized to minimize the required X–Band power, for a beam voltage of 60 kV. The input cavity coupling scheme is the same as in the output cavity. Table 2 summarizes the designed and measured properties of the two degenerate eigenmodes in the input cavity.

![Figure 3: Device Design.](image)

Figure 3: Device Design.

<table>
<thead>
<tr>
<th>Table 1: Summary of Output Cavity Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0 (GHz)</td>
</tr>
<tr>
<td>Designed #1</td>
</tr>
<tr>
<td>Designed #2</td>
</tr>
<tr>
<td>Measured #1</td>
</tr>
<tr>
<td>Measured #2</td>
</tr>
</tbody>
</table>

![Figure 4: Equivalent circuit model of a two different single–moded cavities, coupled through a hybrid coupler.](image)

Figure 4: Equivalent circuit model of two different single–moded cavities, coupled through a hybrid coupler.

The input deflecting cavity shape was optimized to minimize the required X–Band power, for a beam voltage of 60 kV. The input cavity coupling scheme is the same as in the output cavity. Table 2 summarizes the designed and measured properties of the two degenerate eigenmodes in the input cavity.

COLD TEST

To measure the properties of these cavities through a hybrid coupler, we developed the following model. From an equivalent circuit model of a single–moded cavity with resonant frequency f_0, the reflection coefficient as a function of frequency f, intrinsic quality factor Q_0, and coupling
The measured $\Gamma(f; f_0, Q_0, \beta_c)$ is given by:
\[
\Gamma(f; f_0, Q_0, \beta_c) = \frac{1 - j Q_0 \delta(f; f_0) - \beta_c}{1 - j Q_0 \delta(f; f_0) + \beta_c},
\]
where:
\[
\delta(f; f_0) = \frac{f - f_0}{f_0}.
\]

Our device can be modeled as shown in Fig. 4. There are two different cavities with reflection coefficients $\Gamma_1 = \Gamma(f; f_0, Q_0, \beta_c^1)$ and $\Gamma_2 = \Gamma(f; f_0, Q_0, \beta_c^2)$. The scattering matrix of the hybrid coupler is given by:
\[
S_{hc} = -\frac{1}{\sqrt{2}} \begin{pmatrix}
0 & j & 1 & 0 \\
1 & 0 & 0 & j \\
0 & j & 1 & 0
\end{pmatrix}.
\]

Solving the equation $b = S_{hc}a$, and noting that $a_4 = 0$, $a_2 = -b_2 \Gamma_1$ and $a_3 = -b_3 \Gamma_2$, we can get the reflection and transmission of the entire system as:
\[
\Gamma = \frac{b_1}{a_1} = \frac{1}{2} (\Gamma_1 - \Gamma_2),
\]
\[
T = \frac{b_1}{a_1} = -\frac{1}{2} j (\Gamma_1 + \Gamma_2).
\]

We can see from (4) that for identical cavities ($\Gamma_1 = \Gamma_2$), the reflection becomes zero, and the transmission becomes the same as in a single–moded cavity.

We fitted the measured S–parameters of the output deflecting cavity. The results are shown in Table 2. The frequencies, coupling factor, and quality factor are very close to the designed; however, there is a significant frequency deviation between the two degenerate eigenmodes, on the order of f_0/Q_0. The measured transmission and fit are shown in Fig. 6.

ACKNOWLEDGMENTS

We wish to acknowledge Professors T. Lee, S. Church, and A. Arbabian for allowing us to use their equipment. We further wish to acknowledge A. Raghunathan, M. Sieth, and N. Dolatsha for assisting with the measurements.

REFERENCES

