Synchronized Timing and Control System Construction of SuperKEKB Positron Damping Ring

Hitoshi Sugimura, H. Kaji, Y. Ohnishi, K. Furukawa, F. Miyahara, M. Satoh, T. Nakamura, S. Sasaki

KEK

Oct. 12, 2017
Contents

1. SuperKEKB Project
2. Event Timing System
3. Event Timing System at DR
4. Pre-trigger Timing
5. Conclusions
Contents

1 SuperKEKB Project

2 Event Timing System

3 Event Timing System at DR

4 Pre-trigger Timing

5 Conclusions
SuperKEKB Project

- $e^+ - e^-$ collider, B-Factory
- Aim at 40-times higher Luminosity than previous KEKB project
 - $2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} (\text{KEKB}) \rightarrow 8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1} (\text{SuperKEKB})$
- Twice larger storage beam \rightarrow Higher beam current at Linac
- 20-times higher collision rate with nano-beam scheme
Damping Ring (DR)

- Emittance become down to 1/500 during damping time.
- 40 ms damping while linac operate at 50 Hz
- Accomodate 2-bunches × 2-pulses
- 2-bunches in a pulse are separated by 96.3 ns (10.385 MHz)
- Injection/extraction kickers rise/fall times are ~ 100 ns

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>1.1 GeV</td>
</tr>
<tr>
<td>Repetition frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Length</td>
<td>135.5 m</td>
</tr>
<tr>
<td>RF frequency</td>
<td>508.9 MHz</td>
</tr>
<tr>
<td>Harmonic Number</td>
<td>230</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>2</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>96 ns</td>
</tr>
</tbody>
</table>
Contents

1. SuperKEKB Project
2. Event Timing System
3. Event Timing System at DR
4. Pre-trigger Timing
5. Conclusions
Event Timing System for Simultaneous Top-up Injection

- Fast, global and synchronous controls
 - synchronized with 114 MHz RF clock and 16 bit/clock event/data transfer
- MRF’s series Event Generator and Receivers
 - VME-EVG-230 / VME-EVR-230-RF / PXI-EVR-300
- System communicate VME64x and PCIe (VxWorks v6.8 and Windows)
- EPICS R3.14.12 with mrfioc2 (device support)
Two timings (injection and extraction at DR) are needed.

- Common frequency between 2856 MHz and 508.9 MHz is 10.38 MHz (96 ns, 49 buckets duration)
 - Chance of injection timing turns up once per 96 ns (49 buckets).
- Need to consider bucket select combination each DR and MR buckets.
- The number of combination is 5120×23 (least common multiple of DR and MR).
Master Timing System

Master Timing System consists of 1-upper EVG, 1-upper EVR and 2-lower EVGs in 1-IOC. It delivers dozens kinds of timing (BPM, Kicker, Septum ...).

Upper EVG calculates which bucket is injected/extracted (bucket selection). Lower each EVGs delay timing according to bucket-ID.

LINAC 2856 MHz
DR(230Bkt) 508.9 MHz
LINAC 2856 MHz
MR(5120Bkt) 508.9 MHz
Contents

1. SuperKEKB Project
2. Event Timing System
3. Event Timing System at DR
4. Pre-trigger Timing
5. Conclusions
Kicker Timing

- Injection/extraction (especially extraction) kicker timing is most important to have effect of beam jitter.
- Injection/extraction kicker need charging trigger \(\sim 15 \text{ ms} \) before firing. We call “pre-trigger”.

Pulse trains should be provided for BPM

- at revolution frequency (508.9 MHz/230)
- synchronized to one of the beam bunches in DR

Dispersion measurement

- 508.9 MHz ± 50 kHz
- should be disconnected from other clocks
Injection and extraction timing event is sent to each EVRs. EVR for injection and extraction timing distribute main timing and pre-trigger timing. The pre-trigger timing is originally generated EVR itself. For dispersion measurement, valuable delay logic is added.
Pre-trigger Timing

Contents

1 SuperKEKB Project
2 Event Timing System
3 Event Timing System at DR
4 Pre-trigger Timing
5 Conclusions
Event stream from EVG to EVR

Event is sent from EVG to EVR every 20 ms. Suppose to think about DR injection timing at Shot\#n.

![Diagram showing Event stream from EVG to EVR]

- Event stream from EVG to EVR every 20 ms.
- Suppose to think about DR injection timing at Shot\#n.

Diagram Notes:
- EVG to EVR every 20 ms.
- Timing considerations for Shot\#n.
MR timing is sent after bucket selection delay \(D_{\text{main}} \). \(D_{\text{main}} \) would change shot by shot due to bucket selection.

\[
\begin{array}{c}
\text{EVG} \\
\bullet \\
\text{EVR} \\
\bullet \\
\bullet \\
\end{array} \\
\begin{array}{c}
D_{\text{main}}[n-2] \\
\text{Shot}\#n-2 \\
20\text{ms} \\
\text{Shot}\#n-1 \\
\text{Shot}\#n \\
D_{\text{main}}[n-1] \\
D_{\text{main}}[n] \\
20\text{ms} \\
\end{array}
\]

MR Timing
Delay time for pre-trigger (D_{pre}) is received by using “Data Buffer” before Shot #n-1. Then, set D_{pre}.

Event stream from EVG to EVR
Pre-trigger timing is generated from MR timing. Main trigger timing is generated from Linac timing with no delay.

The delay time (D_{pre}) from MR timing is calculated as eq(1).

$$D_{pre}[n] = D_{main}[n] - D_{main}[n - 1] + 5\text{ms}$$

In this system, timing jitter is measured with 30 ps jitter.
Contents

1 SuperKEKB Project
2 Event Timing System
3 Event Timing System at DR
4 Pre-trigger Timing
5 Conclusions
Summary

- SuperKEKB project aims at 40 times higher luminosity than previous KEKB project
- Operation of damping ring will be started in this FY
- Injector linac, damping ring, EPICS control system, event-based synchronous system are being constructed
- Pre-trigger system was constructed with 30 ps timing jitter
- Long stability test will be started soon.