SKA SYNCHRONIZATION AND TIMING
LOCAL MONITOR AND CONTROL
- Software Design Approach

October 12th 2017

Rajesh Warange (NCRA-TIFR)
Ralph Braddock (University of Manchester)
Background

• What the project is
 – The Square Kilometre Array (SKA) is a global project that aims to build a large radio telescope in Australia and South Africa
 – The Signal and Data Transport (SaDT) consortium, includes all the software and hardware necessary for the transmission of data and information between elements of SKA
 – Synchronization and Timing (SAT) system that provides frequency and clock signals.

• Who we are
 – The local monitoring and control system (SAT.LMC) monitors and controls the SAT system.

• What is to be Presented
 – The approach taken to Designing the SAT.LMC software and what tools were used
 – The internal SAT.LMC team communication model, cross culture sensitivity and leadership principles adopted to keep the project on track and deliver quality design products
Software Design
Software Design (1)

• Methodology
 – Simple and Informal architecture
 – Incremental process
 – Release Packs
 • A snapshot of the artefact progression
 • Keeps Consortium Informed

• Architecture Model
 – SAT.LMC follows “The Open Group Architecture Framework” (TOGAF)
 • Architectural Design Method
 – Design
 – Planning
 – Implementation
 – Governing
Software Design (2)

- **Prototype**
 - Duration of 1 year
 - Mainly In-house testing
 - Small amount of field testing

- **Interfaces**
 - Specifications are captured in Spreadsheet(s)
 - Each row is a functional interface
 - Contains communication protocols
 - Data rates
 - Mechanisms for exchange
 - Internal & External Interface Considerations
• Assumptions
 – Allows design evolution when uncertainty remains
 – Regular review is essential
 • Assumptions should eventually be replaced by facts
 – Master Data Assumptions List (MDAL)
 • Assumptions are recorded centrally within the Consortium – Visible to EVERYONE
• Extensibility and Flexibility
 – Many factors can and have impacted upon the SAT.LMC architecture evolution
 • Combat by maintaining a level of abstraction between SAT.LMC and the interfacing SAT systems
Software Design (4)

• Project Management
 – Local vs. Consortium wide
 – Focus on artefact ownership
 – Avoidance of Micromanagement
 – Discussion on progress rather than autonomous tracking (box ticking)
• Risk Management
 • Risk Register
 – Impact on Cost
 – Impact on Schedule
 – Proposed Mitigation Strategies
Tools
Hands On Tools

• “Paid for” vs “free”
 – Many trade offs
• Microsoft Office Suite
 – But watch out for “quirks” when editing each others documents!
• Software Development Prototyping
 – TANGO Control System Framework
 – Docker containerization
 – Emulators & Simulators
 – Various Operating systems
Overview of Hands On Tools

Disclaimer:
All product and company names are trademarks of their respective holders. Use of them does not imply any affiliation with or endorsement by them.

- **Push**
- **Commit**
- **Modify / Add / Delete Artifacts**

Documents / Spreadsheets / Presentations

- **Office**
- **Visio**

Artifacts Generation Tools

- **Windows 7**

Prototype Tools

- **ETELOGIC.COM**
- **MySQL**
- **Python**
- **TANGO**
- **VirtualBox**
- **docker**

- **Windows 7**
- **Linux**
Communication Tools

• Key to the success of the SAT.LMC team
• Progression
 – Skype became limiting
 – Zoom adopted
• Other means of communication used, but soon dropped
 – WebEx
 – Telephone
Disclaimer:
All product and company names are trademarks of their respective holders. Use of them does not imply any affiliation with or endorsement by them.
Team

• Face to Face meeting
 – At least once per year
• 3 countries
 – India
 – United Kingdom
 – South Africa
• 4 research institutes
 – NCRA-TIFR
 – Jodrell Bank Centre for Astrophysics, University of Manchester
 – South African National Research Network (SANReN)
 – Science and Technology Facilities Council (STFC)
Collaboration & Structure

• Collaboration Time
 – Office Hours Crossover
 • Convenient for our team. Not always the case though
 • Spend up to 5 hours per week speaking

• Leadership
 – Devolved Responsibilities
 • Ownership of artefacts
 • Everyone cannot do everything
 • Internal Review aids common understanding
Conclusion

• This way of collaborating worked well for us
• Not a formally structured way of collaborating
• Common ground goes a long way
• Computerized tools have allowed our team to do things not possible in the past