LIA-20 Control System Project

G.A. Fatkin1, A.O. Baluyv1,2, A.M. Batrakov1, E.A. Bekhtenev1,2, E.S. Korov1,2, Ya. M. Macherev1, V. R. Mamin1, A.V. Ottnar1,2, A.N. Panov1,2, A.V. Pavlenko1, K.S. Shtro1, A.N. Selivanov1, P.A. Selivanov1, A.I. Senchenko1,2, S.S. Seredynakov1,2, S.R. Singaulin1, M.Yu. Vasilyev1
1 Budker Institute of Nuclear Physics, Novosibirsk; 2 Novosibirsk State University, Novosibirsk
E-mail: G.A.Fatkin@inp.nsk.su

Introduction
Linear Induction Accelerator LIA-20 is designed to provide three consecutive electron beams with an energy up to 20 MeV, current up to 2 kA and the beam lateral size after focusing on the target less than 1 mm. It is planned to have one of the pulses divided into 9 angles. The accelerator will be used for the flash X-Ray radiography. Successfully commissioned LIA-20 accelerator (2 MeV, 2 kA) could be considered a prototype for the injector of the 20 MeV installation. The installation consists of a large number of complex electrophysical devices that require extensive control. First stage of commissioning will be a 5 MeV installation.

Structure of the Linear Accelerator Part

- Target
 - Long Accelerating Modules
 - Short Accelerating Modules
 - Injector
 - Pulsed Power Supply Racks

Problems of scale:
- 480 modulators
- Length ~ 120 m
- > 6000 control channels

Reliability requirements
- Components
 - Pulsed Power Supply Rack:
 - 8 modulators
 - Demagnetizing device
 - Charging devices
 - Beam position monitors
 - Lense power supplies
 - Cathode power supply
 - AM positioning system
 - Vacuum pumps

Control System Structure
- Control Rack 1
 - Control Rack 2
 - Control Rack 3

- Linear part
 - Slow controls subsystem
 - Geodetic measurements
 - Vacuum, power supplies, etc.
 - System infrastructure:
 - cranes
 - controllers
 - interfaces

- VME-BINP Crate
 - For more details visit THMLP10!

Slow Controls Subsystem
1. Beamline elements positioning:
 - Angle positioning (water)
 - X-Y positioning (wire)
2. Pulsed power control
 - Modulators
 - Degaussing
 - Lense power supplies
3. Cathode heater control
4. Vacuum control
5. Crate power control

Measurement Subsystem
- "Fast" signals
 - Duration ~10 us, 4 ns per point
 - 16 inductor voltages
 - 4 BPM signals
 - Kicker voltages 1 ns per point

- Total > 480 channels

Synchonization Subsystem
- 2000 Channels
- The synchronization subsystem provides all the controlled and controlling devices with the start pulses. The overall accuracy must be better than 4 ns across 70 m of length. This means that the propagation delays between the control units must be taken into consideration and negated.

Fast Interlock Subsystem
- For more details look up TUPHA103!
 - Inhibit the experiment at ~ 200 m, with reaction time < 20 us

System Infrastructure
- The system infrastructure is built upon COTS hardware: Intel x86-64 servers and multi-monitor x86-64 client machines.
 - Ubuntu LTS is used both on server and client machines.
 - Debian is used on controllers.
 - Software is TANGO-Based

ICAPECS 2017 - TPHA052