LHC Software Architecture – Evolution Toward LHC Beam Commissioning

17/10/2007

ICALEPCS 2007 - Knoxville
Grzegorz Kruk on behalf of the LSA Team
Agenda

• Project essentials
• Challenges
• LSA scope & key concepts
• Implementation
• Recent developments
• Summary
Agenda

• Project essentials
• Challenges
• LSA scope & key concepts
• Implementation
• Recent developments
• Summary
Project essentials

• **Mission:** Provide homogenous software to operate the SPS, its transfer lines and the LHC
 - Note: high level application software

• Project shared between controls and operations

• Entirely written in Java
Agenda

- Project essentials
- Challenges
- LSA scope & key concepts
- Implementation
- Recent developments
- Summary
LHC Challenge
What will be LSA used for?

• Accelerate 2 beams to a very high energy around 27 km long ring

• In two pipes of a few cm diameter

• Squeeze them down to a size smaller than the diameter of a hair

• Get them collide

• Keep them colliding for at least 10 hours
Machine diversity challenge

• Different accelerators: cycling and non-cycling

• Different hardware types and front-ends

• Different philosophy of operating these machines

• Different users (operators)
Cycling vs. non-cycling machines

SPS is a **cycling** machine

- **Sequence of cycles** (super cycle) is played repeatedly in a synchronous way
- **Length of all cycles is fixed**

Diagram:

- **Super Cycle**
 - **Fixed target p+ cycle**
 - **MD cycle**

Axes:

- **SPS Ring**
- **Injection line**
Cycling vs. non-cycling machines

LHC is different – there are no cycles

- **Sequence of processes** (i.e. injection, ramp, squeeze, physics) executed asynchronously
- **Length of some of these processes is unknown** in advance e.g. physics

<table>
<thead>
<tr>
<th>Process</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp down</td>
<td>≈ 18 Mins</td>
</tr>
<tr>
<td>Pre-Injection Plateau</td>
<td>15 Mins</td>
</tr>
<tr>
<td>Injection</td>
<td>≈ 15 Mins</td>
</tr>
<tr>
<td>Ramp</td>
<td>≈ 28 Mins</td>
</tr>
<tr>
<td>Squeeze</td>
<td>< 5 Mins</td>
</tr>
<tr>
<td>Prepare Physics</td>
<td>≈ 10 Mins</td>
</tr>
<tr>
<td>Physics</td>
<td>10 - 20 Hrs</td>
</tr>
</tbody>
</table>
And the system has to be...

- **Reliable**
 - 100% availability when there is a beam in the machine

- **Secure**
 - From unauthorized access
 - Against unwanted actions

- **User friendly**
 - Large amount of devices and data
Agenda

• Project essentials
• Challenges
• LSA scope & key concepts
• Implementation
• Recent developments
• Summary
What is covered by LSA?

- **Optics**
 - Information about all devices
 - Machine layout
 - Twiss parameters
 - ..

- **Settings generation**
 - Generation of initial settings based on optics

- **Settings management & trim**
 - Management of values for all parameters
 - Coherent modifications
 - History of changes and rollback

- **Hardware exploitation**
 - Equipment control
 - Sending settings to the hardware

- **Equipment & beam measurements**
Key Concepts

• Parameter
 - Settable or measurable entity on a device (real or virtual)
 - e.g. LHCBEAM/QPH, MPLH.41994/K, MPLH4199/IREF

• Context
 - Cycle in a Super Cycle
 - Beam process (LHC)

• Setting
 - Value of a parameter for a given context
Parameters Space

- Parameters are organized in hierarchies
- Each hierarchy describes relations between parameters
 - Change of a parameter affects all its dependant parameters
- Roots → usually physics parameters
 - e.g. momentum, tune, chromaticity,…
- Leaves → hardware parameters
 - e.g. reference current on power converters
LHC Parameters Space
Domain model

• The domain model is quite complex
 ■ > 100 domain objects
 ■ ~350K lines of code
 ■ Currently ~40 GUI applications using services provided by LSA

• It still evolves...

• Without a good architecture it would be very difficult to handle that complexity...
Agenda

• Project essentials
• Challenges
• LSA scope & key concepts
• Implementation
• Recent developments
• Summary
Architecture - 3-tier approach

• We wanted to deploy the system in 3 physical layers due to:
 - Central access to the database and to the hardware
 - Central security
 - Caching
 - Reduced network traffic
 - Reduced load on client consoles
 - Scalability
 - Ease of web development

• With a minimal cost of 3-tier architectures
 - Complexity of programming
 - Testing & debugging
 - Deployment

• Plus we needed support for standard services
 - Transactions, remote access,...
Spring Framework

• Leading **lightweight container**
 - Alternative to Enterprise Java Beans (EJB)

• **Plain Java Object (POJO) programming model**
 - None or minimum dependency on the framework

• **All standard services provided**
 - Components orchestration, transactions, remoting, security, ...

• Seamless **deployment in 2- and 3-tier mode**

• **Integration with many 3rd party products**

• Very little effort to maintain the infrastructure
What we use from Spring

• XML based configuration (wiring)
 - Extremely simplified in Spring 2.0

• Database access
 - Spring JDBC abstraction layer

• Transactions management

• HTTP based remoting

• Testing framework
 - Excellent to test Data Access Objects

• Caching
 - Home made mechanism
 - Based on Spring AOP – method call interception
 - Uses ehcache
 - Annotation based configuration
LHC Software Architecture – ICALEPCS 2007 – Grzegorz Kruk

Architecture

- Modular
- Layered
- Distributed

Applications

LSA Client API

Spring HTTP Remoting / Proxies

HTTP

Business Tier (Web Container)

LSA Client API

LSA Client implementation

LSA CORE
(Settings, Trim, Trim History, Generation, Optics, Exploitation, Fidel)

JAPC

JAPC CMW/RDA

Data Access Object (DAO)

Spring JDBC

CORBA IIOP

JDBC

CORBA IIOP

JDBC

Devices

Datastore

17/10/2007
Data model

• The system is highly data-driven
• Single model (database schema) for all machines
 - SPS, LEIR, LHC,...
• Result of several iterations
• Rationalized but nevertheless quite complex
 - ~170 tables
Generic Applications

Data model & business logic are common for all accelerators
→ we can reuse applications
Agenda

• Project essentials
• Challenges
• LSA scope & key concepts
• Implementation
• Recent developments
• Summary
LHC Timing

- **All LHC processes** (e.g. injection, ramp,...) will be synchronized and triggered using timing events
 - Sent by the LHC Timing System [see J.Lewis’ talk on Friday]

- **LSA provides service to manage these events**
 - Creation, modification
 - Loading to and unloading from the Timing System
LHC is dangerous

Airbus A380 at 700 kph

Energy stored in the LHC magnet system

LHC Beam energy

Aircraft carrier at 11 knots

We have to be very careful…

• RBAC
• MCS
• MAD

(1) R.Schmidt „Status of the LHC accelerator“, November 2005
(2) M.Lamont, “LHC Collimators review”, 30 June 2004
Role Based Access Control

- Created in the frame of the LHC at FermiLab Software (LAFS) collaboration

- Helps to protect:
 - Against unauthorized access to the equipment i.e. sending settings by inappropriate people
 - From doing bad things at bad time
 - Functionality reserved for specified groups of users (experts)

- When sending settings to the hardware - verification of credentials is done by the middleware (CMW)

- Seamless integration in LSA thanks to the Spring remoting
 - No need to modify the API
Management of Machine Critical Settings (MCS)

- Aimed for the most critical and potentially dangerous devices/settings

- Complementary to the RBAC
 - Second layer of security

- Based on a digital signature scheme
 - To ensure data integrity

- Verified on the front-end level (FESA framework – next talk)

Methodical Accelerator Design (MAD)

- **Modeling and simulation tool** for particle accelerators and beam lines
- Simulation of settings changes before applying them to the hardware
Agenda

- Project essentials
- Challenges
- LSA scope & key concepts
- Implementation
- Recent developments
- Summary
Summary

• Stable and reliable architecture
 ✓ We can concentrate on the domain which is complex enough

• For all accelerators we have the same:
 - Data model
 - Core logic
 - Applications

- Good data model → Commonalities

• System used currently for the SPS, its transfer lines, the LEIR and the LHC hardware commissioning

• Crucial functionality for the LHC in place