Lessons Learned From The SNS Relational Database

Presented by David Purcell
For David Purcell, Jeff Patton, and Katia Danilova
Future Plans - Central Role of Database

1. Design information:
 names, locations, .db, .cmd, ...

2. Equipment receiving,
 acceptance test data:
 tracked by barcode

3. Calibration/Maintenance
 of installed devices:
 tracked by barcode

4. Web-based reports,
 Initialization Files

5. Software in
 Network Attached
 Devices

6. Applications

Oracle Server

XML, .db, HTML

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
Weekly Highlights
Future Plans - Central Role of Database

Oracle Server

1. XML, .db, HTML
2. Equipment receiving, acceptance test data: tracked by barcode
3. Calibration/Maintenance of installed devices: tracked by barcode
4. Web-based reports, Initialization Files
5. Software in Network Attached Devices
6. Applications

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY
Weekly Highlights
Future Plans - Central Role of Database

Oracle Server

3. Calibration/Maintenance of installed devices: tracked by barcode

4. Web-based reports, Initialization Files

5. Software in Network Attached Devices

6. Applications

XML, .db, HTML
Future Plans - Central Role of Database

Oracle Server

4. Web-based reports, Initialization Files

5. Software in Network Attached Devices

6. Applications
Future Plans - Central Role of Database From 2003 ICALPCS (Gyeongju, Korea)
And A Quick Look At The Numbers

<table>
<thead>
<tr>
<th>Database Tools</th>
<th>2003</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oracle 9i Enterprise Edition RDMS</td>
<td>Oracle 10g Release 2</td>
</tr>
<tr>
<td></td>
<td>Client Tools Powered by 9i Application Server</td>
<td></td>
</tr>
<tr>
<td>Application Subject Areas</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Tables</td>
<td>161</td>
<td>378</td>
</tr>
<tr>
<td>Device Records</td>
<td>5,700</td>
<td>39,710</td>
</tr>
<tr>
<td>Parameter Records</td>
<td>41,000</td>
<td>544,485</td>
</tr>
<tr>
<td>Construction / Database</td>
<td>40% vs. 30% Complete</td>
<td>100% vs. Unknown</td>
</tr>
</tbody>
</table>
Let's Compare

2003

- Database Applications
 - LabVIEW
 - XAL
 - Rack Profile
 - Web PV Data Applications
 - Electronic Logbook
 - JERI (Java EPICS RDB Interface)
 - Bypass Request System
 - Equipment Tracking System
 - Web Reports (Discoverer)
 - Commercial Products (ProjectWise, DataStream)

2007

- Database Applications
 - DB 2 XAL
 - DB Browser
 - Data Queries
 - From Alarm Log To Oracle
 - From Error Log To Oracle
 - IOC Health to RDB
 - PS Report
 - PV Log Browser
 - SS Loader
 - Spline Fit
 - Trip Monitor
 - Trip Viewer
 - IOC Report Tab
 - Diagnostics IOC configuration
 - Bypass Request
 - Data search and archive
 - DataStream
 - Datastream Reports
 - Document Number Reservation
 - Electronic Logbook
 - Equipment Tracking
 - Equipment Receiving
 - ICS NetReg
 - JACoW SPMS (ICALEPCS07)
 - Jeri
 - MPS Trips
 - MPS Audits
 - ODBC users
 - Operations Administration
 - Power Outage Report
 - Power Updates
 - Primavera
 - Projectwise
 - PSSO Wireless Meter Entry
 - PSSO Meter readings Report
 - Certain Physics applications
 - Power Supply configuration generation
 - PV Crawler
 - PV Logger
 - RF Cavity trips
 - SCORE
 - SNS channels 22,32,96,97,98
 - SNS Service Request Web Interface
 - SNS Work Order Closeout
 - Web reports including ROCS
Who are “We”

- Band of merry database professionals.
Lost Opportunities?

• SNS has been successful

• Many good things done without using the SNS RDB.

• “We” have learned a lot.
 – Lost opportunities caused disappointment but increased ability to produce later on.
What Did We Learn.

Reasons for Success
- Good Schema
- Project Champion
- Historic Reference
- Real Need
- Code Stealing

Lost Opportunities
- Deadlines
- User/Client Expectations
- Data In Versus Out
- Good Schema
- Data Maintenance

Oak Ridge National Laboratory
U.S. Department of Energy
Weekly Highlights
Some Examples - Configuration

MPS
- Provide database derived configuration files to MPS IOCs
 - Strong Leader or “Champion”
 - Set Procedure
 - Existing Usable GUI
 - Standard Accepted Tool

PC Based IOCs
- Provide database derived configuration files to PCs
 - Management Request
 - No Leader or “Champion”
 - No Long-term Plan or Procedure
 - Complex GUI

BLM IOCs
- Provide database derived configuration files to BLM IOCs
 - “Champion” Left Project.
 - Database Developer Within BLM Group.
 - No Set Procedure.
 - GUI built as Part of Project BUT Not Completed.
 - RDB Control Developed to Replace Existing Hand Entry.

Power Supply
- Provide database derived configuration files to power supplies
 - Multiple Leaders
 - Multiple Scopes
 - Good Plan and Procedure
 - Functioning Application
 - Schema Required Data From Others

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
Weekly Highlights
Some More Examples

Electrical Power Project (RPPA13)
(Manage and Report on Electrical Power Routing)
- Management Driven
- Strong Leader or “Champion”
- Procedure Built Into Project
 - Created GUI at Start of Project
- Standard Accepted Tool
- QA of Data
- Data Ownership

Diagnostics RDB Reports
(Accessible data summary reports specific to the Diagnostics Group)
- Group Leader Implemented
- Database Developer within group acting as “Champion”
- Data Ownership
- Standard Toolset
- Leader and developer have left group.

General RDB Reports
- Simple is better.
- Require Easy Access (web or email)
- Alternative not available.
- Clients are necessary

Oak Ridge National Laboratory
U.S. Department of Energy
Weekly Highlights

HFIR
SPALLATION NEUTRON SOURCE
Final Examples

Equipment
(Use of DataStream to track equipment maintenance)

- Management Mandate
- Strong Leader or “Champion”
- Takes advantage of complex SNS schema.
- COTS (DataStream)
 - Ready to Use System?
 - SNS RDB developers not able to work with data.
 - GUIs are available but do not meet client requirements.
- Overwhelming
 - No Implementation Strategy.
 - Too Much Work and Not Enough Support Personnel.
 - Extra Unplanned Work for Technical Groups.
- Introduced Work-a-rounds
- No Tools.
- No Maintenance plan.

Electronic Logbook
(Electronic Logbook)

- SNS Wide Requirement.
- Non-Restrictive Timeframe.
- No RDB Restrictions on Data.
- Easy to Use GUI.
- The Wrench that Pounds the Nail.
Who thinks what?

- Database Developers (Glad and Sad)
 - Glad we have helped in the ways we have.
 - Disappointed in the lost opportunities.
Who thinks what?

- **Database Developers (Glad and Sad)**
 - Glad we have helped in the ways we have.
 - Disappointed in the lost opportunities.

- **Software Engineers (Pessimistic)**
 - Changes in approach don’t help reach goals and the RDB is therefore unnecessary.

- **General Users (Frustrated)**
 - Believe RDB should be populated.
 - Want Permissions.
 - Want Applications That Allow Maintenance.
Who thinks what?

- **Database Developers (Glad and Sad)**
 - Glad we have helped in the ways we have.
 - Disappointed in the lost opportunities.

- **Software Engineers (Pessimistic)**
 - Changes in approach don’t help reach goals and the RDB is therefore unnecessary.

- **General Users (Frustrated)**
 - Believe RDB should be populated.
 - Want Permissions.
 - Want Applications That Allow Maintenance.

- **Management (Apathetic)**
 - Good idea, Use it if you can.
 - Don’t let it slow you down.
 - Still Not High Priority
What Does SNS Need To Do?

NOTHING.

- The overall goals of the project continue to be realized.

BUT...

- Goals may be easier to reach with a stronger RDB implementation.
SNS Summary

Did Well

- Schema
 - Complex but serves most project needs.

- RDB was emphasized from beginning of project in a couple of groups.
 - I was first hired in Diagnostics group and did all sorts of stuff. It became personal.

- Enthusiastic Champions

- Some Groups Implemented directed use of RDB.
 - Managers of the Physics and Diagnostics directed members RDB final resting place for data.

- Some Great applications and Reports
 - ELog, JERI, ...
SNS Summary Cont.

Could have done better.
- Management support.
- Procedures and Standards
- More RDB development personnel.
- Standardize the RDB use for all of project.
 - Access, Oracle, MySQL, etc are still in use.
- GUI - Standardized toolset for data entry and reporting.
 - Entry GUIs Especially Bad or Absent.
- Eliminate Telepathic Requests
- Give tools to users as soon as possible.
- Plan on how to deal with short cuts that were allowed.
 - Incorrect RDB use
 - Engineers admit to entering data just to get it in. Now it’s embedded and hard to fix.
Advice:

- Start thinking RDB from start – a mind set
 - Unofficial part of mission statement.
 - Sooner or later it will go in.

- Get support
 - Hire Database Developers as soon as possible
 - Help them understand their role.
 - Multi-task RDB developers as technicians (or vice versa)
 - Embrace Project Champions

- Take advantage of what is available.
 - Settle on one project-wide toolset.
 - SNS Schema or IRMIS ...
 - Use common reporting and input tools

- Project-wide use of agreed upon RDB

- Try to eliminate allowance of shortcuts.
 - Non-standard is bad and will probably become permanent.

- Make Use of RDB Applications a No-Brainer

- Don’t Mandate but proceduralize – Procedures and Standards.