Trends in Software

for

large astronomy projects

G.Chiozzi, A.Wallander – ESO, Germany
K.Gillies – Gemini Observatory, La Serena, Chile
B.Goodrich, S.Wampler - National Solar Observatory, Tucson, AZ
J.Johnson, K.McCann – W.M.Keck Observatory, Kamuela, HI
G.Schumacher – National Optical Astronomy Observatories, La Serena, Chile
D.Silva – AURA/Thirty Meter Telescope, Pasadena, CA
Aspects analyzed

- Timeline
- Challenges
- Architecture
- Frameworks
- Development methodologies
- Technological implementation
 - HW platforms
 - Operating systems
 - Programming languages
 - User Interfaces.
Challenges of new projects

- Synchronized multiple distributed control loops (wave front control)
- Multi-level off-loading schemes
- Fault detection, isolation and recovery (E-ELT M1: 1000 segments with actuators and sensors)
- Operational efficiency (TMT requirement: on target in <5 minutes).
Architecture

- All major facilities in operation: three-tier architecture
 - High-level coordination systems
 - Low-level real time control computers (LCUs)
 - Devices with limited degree of intelligence
- Fairly independent sub-systems: slow correction offloading
- Wave front control (adaptive optics and interferometry) introduces new requirements:
 - Distributed real time synchronization and feedback
 - Significant physical separation
- Systems of systems, often heterogeneous
- LCUs role is eroded on both sides.
Frameworks

- A uniform software framework has a value in simplifying development and maintenance.
- Isolate application from middleware providing a layer of common services.
- Separation between technical and functional architecture now formally adopted.
- Component based architectures emerged as particularly useful in distributed systems.
- Sharing the technical framework would allow sharing functional components.

Frameworks adopted:
- Keck and Gemini: EPICS, RTC
- ESO Paranal and La Silla: VLT CCS
- ALMA and other projects: ACS
- ATST: ATSTCS

Common services:
- Connection
- Event
- Command
- Logging
- Persistent store
- Error handling
Development methodologies and modeling techniques

- **Our constraints:**
 - Multi-year observatory design periods
 - Review structure and process imposed by funding agencies is oriented to a waterfall approach
 - Floating requirements

- **Methodology evolution:**
 - Mid ’80s/ mid ’90s: Structured programming
 - Mid ’90s/ beginning 2000: Object Oriented and UML *(pragmatic approach)*
 - Now: SysML, agile methodologies:
 - Requirement management and traceability
 - Integration in a coherent system model as seen from different disciplines.
Hardware platforms

- In most existing observatories:
 - High level coordination \rightarrow general purpose WS
 - Real time \rightarrow Local Control Units (often VME)
 - Devices attached directly to VMEs
- Many more options are available now:
 - High level coordination \rightarrow Personal Computers
 - (Soft) Real time \rightarrow PC with real time OS
 - Intelligent devices on ETH or industrial buses (CAN)
 - (Hard) Real time \rightarrow DSPs and FPGAs
- Clusters for raw computing power
- Virtualization under evaluation. Trend for the future?
Operating systems

- The 1990s
 - Proprietary UNIX
 - Proprietary RTOS (VxWorks dominating)
- The turn of the century: open source
 - Linux
 - Real Time Linux
- And now?
 - Questioning Linux
 - Solaris re-emerging
 - Open source to stay (Solaris)
 - MsWindows (and OPC)?
 - Other players?

- OS neutrality
- Real time Java
- QNX
- LabVIEW and LabView-RT
- PLCs
- FPGAs and DSPs.
Programming Languages

- The core language(s):
 - Mid ’80s/ mid ’90s: C domination
 - Mid ’90s/ beginning 2000: C++ takeover
 - Now: Java explosion, C++ decline, C holds

- The glue: from Tcl/Tk to Python and over
- LabVIEW’s role growing
- We have to cope with:
 - Different languages for different purposes
 - Highly distributed systems

<table>
<thead>
<tr>
<th>Language</th>
<th>Keck</th>
<th>VLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>251050</td>
<td>246738</td>
</tr>
<tr>
<td>C++</td>
<td>0</td>
<td>84400</td>
</tr>
<tr>
<td>Capfast</td>
<td>130116</td>
<td>0</td>
</tr>
<tr>
<td>Tcl/Tk</td>
<td>9408</td>
<td>81657</td>
</tr>
<tr>
<td>Others</td>
<td>118144</td>
<td>64136</td>
</tr>
<tr>
<td>Total</td>
<td>508718</td>
<td>476931</td>
</tr>
</tbody>
</table>
User Interface

- A challenging area. Growing complexity.
- We are comfortable with Engineering UI development.
- We do not have skills for good Operator UIs.
- Java and Tcl/Tk the most used.
- GUI builders are not adequate.
- Rapid prototyping: necessary, but with a dark side.
- We cannot afford specialized UI development teams.
Conclusion

New facilities are NOT scaled up versions of existing ones. Paradigm changes may be required

- Analysis of control system evolution in observatories is on-going
- We have identified clear common trends
- We aim at:
 - Sharing lessons learned
 - Identifying areas for cooperation
 - Sharing architectural elements and infrastructure
- Cooperation is made easier by international collaborations and the open source movement.
The authors represent just a subset of the projects in astronomy. Many more colleagues in the astronomical observatory community have given their ideas and time as we have developed this paper.

Web Links

<table>
<thead>
<tr>
<th>Project</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESO</td>
<td>www.eso.org – Email: gchiozzi@eso.org</td>
</tr>
<tr>
<td>W.M.Keck Observatory</td>
<td>http://www.keckobservatory.org</td>
</tr>
<tr>
<td>Gemini Observatory</td>
<td>http://www.gemini.edu</td>
</tr>
<tr>
<td>ALMA</td>
<td>http://www.alma.cl</td>
</tr>
<tr>
<td>ATST</td>
<td>http://atst.nso.edu</td>
</tr>
<tr>
<td>LSST</td>
<td>http://www.lsst.org</td>
</tr>
<tr>
<td>Thirty Meter Telescope</td>
<td>http://www.tmt.org</td>
</tr>
</tbody>
</table>