TINE Control System
Overview and Status

P. Bartkiewicz, P. Duval, S. Herb, H. Wu (DESY/ Hamburg)
and
S. Weisse (DESY/ Zeuthen)
TINE: A Quick Tour

- Three-fold Integrated Networking Environment
 (->Keep your eye on the word “Integrated”)
- Mature Control System
 - CERN Isolde Spin-off (~1991)
 - All the usual central services:
 - Archive, Alarm, Naming, Security, Logging, etc.
- Small Footprint
 - TINE Kernel written in C (just like your Operating System) or Java
 - Berkeley Sockets (NO SunRPC, CORBA, or other 3rd Party dependencies !)
 - Either Single-threaded or Multi-threaded mode
- Easy to Install
- High Performance
- Plug and Play
- Scalable to very large machines!
TINE @ DESY
HERA

- Large machine!
- 6.3 Km Proton-electron storage ring, collider
- Experiments at ZEUS, H1, Hermes, HeraB
- superconducting proton ring, RF cavities => QPS
- > 100000 control points

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Nr. of Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet PSCs</td>
<td>2000</td>
</tr>
<tr>
<td>RF Systems</td>
<td>230</td>
</tr>
<tr>
<td>Vacuum</td>
<td>3000</td>
</tr>
<tr>
<td>BPMs</td>
<td>800</td>
</tr>
<tr>
<td>Other beam measurement instrumentation</td>
<td>2000</td>
</tr>
<tr>
<td>Quench Protection System</td>
<td>2000</td>
</tr>
<tr>
<td>Other diagnostic instrumentation</td>
<td>1000</td>
</tr>
<tr>
<td>Air conditioning, water cooling</td>
<td>500</td>
</tr>
</tbody>
</table>
HERA FECS:

Shutdown on June 30, 2007

~160 Front-End Controllers (FECs)
Many Operating Systems!
Control Systems 101

Control Systems (one way or another) have to deal with ...

- **Distributed** end points and processes
- **Data Acquisition** (front end hardware)
- **Real-time** needs (where necessary)
- **Process control** (automation, feedback)
- **Central Services** (Archive, Alarm, Name Resolution, …)
- **Security** (who’s allowed to do what from where?)
- **States** (Finite State Machines, sequencing, automation…)
- **Time synchronization** (time stamps, cycle ids, etc.)
- **Databases** (configuration, machine data, post-mortem data, …)
- **Statistics** (control system itself, operation, …)
- **Logging** (central, local, application, …)
- **Data transport** (data flow, *control system protocol*, scalability)
TINE Protocol (1)

- **Client-Server (classic)**
 - Transaction based
 - Synchronous data access only
 - The “**N-Client**” Problem? (do threads help?)
 - ExecLink("/HERA/BPM/WL167MX","ORBIT.X", ...)

- **Publisher-Subscriber (nearly classic)**
 - **Connection Tables**!
 - Synchronous/Asynchronous data access
 - The “**10N-Client**” Problem?
 - AttachLink(…, DATACHANGE, 100, linkCb)
 - Callback events!
TINE Protocol (2)

- **Producer-Consumer**
 - Asynchronous data messages (Multicast)
 - The "N-Producer" Problem?
 - AttachLink("HPENERGY", …, RECEIVE, 1000, linkCb)

- **Publisher-Consumer (Producer-Subscriber?)**
 - Like Publisher-Subscriber but:
 - Multicast group is a single connection Table entry
 - **N = 1 !!!**
 - AttachLink(…, DATACHANGE|NETWORK, 100, linkCb)
TINE Protocol (2)

TINE Globals

TINE Video
TINE Data Types

- Primitives (byte, short, int*, long*, float, double, char*)
- Fixed-length Strings (“NAME16”, “NAME32”, “NAME64”, …)
- Doublets (FLTINT, “INTINT”, “DBLDBL”, “NAME32INT”, …)
- Triplets (“FLTINTINT”, “NAME16FLTINT”, …)
- Quadruplets (“FLTINTINTINT”, “INTINTINTINT”, …)
- Specials (“USTRING”, “UNAME”, SPECTRUM, VIDEO…)
- Bitfields (new to Release 4.0):
 - CF_BITFIELD8, CF_BITFIELD16, CF_BITFIELD32, CF_BITFIELD64
 - Data type: DBITFIELD
 - Bitfield Registry

- User-defined “Tagged Structures” !!!
 - Structure registered at both ends (client, server)
 - Client can ‘discover’ structure fields!

*Platform dependent
TINE Naming Convention

- Hierarchical
- Device is specified by:
 - **Device Context** (*Facility* in DOOCS, *Domain* in TANGO)
 - **Device Server** (or **Group**) (*Device* in DOOCS, *Family* in TANGO)
 - **Device Name** (*Location* in DOOCS, *Member* in TANGO)
- Data endpoint is specified by:
 - **Property** (*Property* in DOOCS, Attribute/Command in TANGO)
 - Are really ‘methods’ or ‘calls’

Note: **Device Subsystem** is not part of the name space, but is a browseable element!
TINE Address Redirection

Device Redirection

Some registered devices are not handled directly by "QUAD"!

Wildcard calls (e.g. /TTF/QUAD/*/BITS2AMPS) still work!

Property Redirection (e.g. "Orbit.X.ARCH" -> central archive server)
I want to be known to the system as “BPM.P” in the context “HERA”

Does BPM.P already exist for HERA?

- > Yes : Is same address as already registered?
 - > Yes: Accept and increment reboot count
 - > No:

 Is the currently listed BPM.P for HERA running ?

 Yes : Refuse and send “in-use” message
 No : Accept and update database

- > No : Accept and update database

Equipment Name Server (ENS)

- Forward accepted requests to secondary name servers

Philip Duval - TINE Overview
Plug and Play (joining a group)

I want to be known to the system as “ERF.WL” in the context “HERA” and join the group “EHF”

- ERF.WL registers with ENS as before
- ERF.WL registers group EHF with GENS

 Does group EHF exist?

 Yes: Is ERF.WL a member?

 Yes: Update device list if different

 No: join group

 No:

 Create Group and register Group as Server in Context HERA with the ENS

- Clients see a “Server” called “EHF”
- Selected Device is redirected to the appropriate physical server.
TINE Client API …

- Fundamental API is:
 - Link based and Not Channel based!
 - Narrow Interface
 - **NOT** ‘get’, ‘set’, and ‘monitor’ !!!
 - Think of ‘calls’ a la RPC or RMI …
 - Synchronous data acquisition
 - Asynchronous data acquisition
 - Callbacks, events
Client API: Synchronous Calls

/<context>/</server>/<device>
e.g.: “/PETRA/Vacuum/WLB.HP141”

Device Property or Method
e.g.: “Pressure”

ExecLink(devName, devProperty, dout, din, access, timeout)

Output Data object
(returned from Server)

Input Data Object (sent to Server)

Access flags:
READ, WRITE, + misc.

Atomic Set/Get, i.e. ‘call’!
Client API: Synchronous Calls

```
/<context>/<server>/<device>
e.g.: “/PETRA/Vacuum/WLB.HP141”

GET {
    ExecLink(devName, devProperty, dout, din, READ, timeout)
}
```

Device Property or Method
e.g.: “Pressure”

Output Data object
(returned from Server)

Input Data Object (sent to Server)

Access flags:
READ, WRITE, + misc.
Client API: Synchronous Calls

e.g. A call to the orbit correction server:

`din = tagged struct with optics, current orbit, beam parameters;`

`dout = tagged struct with new optics, projected corrected orbit;`

ExecLink(`/SERVICE/ORBCOR", "EFFCOR", dout, din, READ, 1000)``

e.g. “Command” Properties: “RESET”, “INIT”, “START”, …

ExecLink(`/HERA/Transfer/P", "STOP", NULL, NULL, WRITE, 1000)``
Client API: Asynchronous Calls

Analogous to synchronous parameters …

`AttachLink(devName, devProperty, dout, din, access, pollrate, void (*callback)(int,int), callbackID, mode)`

Callback with callback id and status code …

`DATACHANGE`, `TIMER`, `SINGLE EVENT` (scheduled), `NETWORK GROUPED WAIT` + …
TINE API
(Application Programmer’s Interface)

- C, C++
- VB
- ActiveX
- Java
- C#, VB.NET (rudimentary, but more coming soon!)
- Command line scripts
- Python Bindings
- Plus …
TINE and MatLab ...

Example: DORIS Orbit

Simple script ("M-file") to read and plot the DORIS orbit

```matlab
val = tineread('/DORIS/DOORBET/#0 [ORBIT]');
figure(1)
subplot(2,1,1)
bar(1:41, val.ORBIT(2:42))
xlabel('BPM index')
ylabel('x / mm')
title(['DORIS Orbit, ' val.timestamp])
subplot(2,1,2)
bar(1:41, val.ORBIT(44:84))
xlabel('BPM index')
ylabel('y / mm')
```
TINE and LabView ...

Write TINE Servers in LabView!

Write TINE Clients in LabView!
TINE Device Layer

- “Do it yourself” + your hardware API
 - Use those Windows drivers your hardware comes with!
- EPICS IOCs (asyn drivers) + Epics2Tine
- LabView VIs + TINE LabView
- DOOCS + DOOCS API

- **CDI** (Common Device Interface) !!!
 - Bus plugs for CANOpen, SEDAC, RS232, SiemensPLC, TwinCatADS, Libera, … (asyn?)
- **TICOM** (TINE CanOpen Manager)
TINE Archive System
(lickity split data retrieval !)

Example: Multi-Channel Analyzer:

All temperatures as “snapshot” (vs. selected reference)

Histories of selected sensors:

Histories of machine operation parameters:

Archive call < 100 msec
TINE Alarm System

Compact Overview

Detailed view
Operations + Availability

Operations Overview: a Typical Day at DESY-2

State Information (running mode) during 24 hours

Overview of beam current and energy during 24 hours
< 200 Console Applications available

~ 20 Console Applications needed for Normal Operation

Console Applications generally “Rich Clients”
TINE Clients: Rich Clients
TINE and Java ACOP (for rich clients)

No Frameworks!
Use Eclipse, NetBeans, or whatever ...

Browse Control system at design-time with property panels or customizer ...
TINE and Java ACOP + COMA (for simple clients)

No Frameworks!

Lightweight!
Just start a coma application (e.g. an empty coma application)

Browse Control system at run-time with customizer …
TINE Video
(Multicasting + Scheduling)

.5 Mbyte Video Frames @ 10 Hz multicast (100 Mb ethernet). (also runs fine @ 20 Hz)

Uses the NETWORK switch => as many clients as you want!

Server calls the Scheduler when a new frame is grabbed => as real-time as it gets !!!

Philip Duval - TINE Overview
TINE and Web Tools
(Web2C: Web-based Controls Client)

- Thin Ajax Client
- Widget toolkit
- Interface to TINE
TINE Platforms …

- DOS
- Win16, Win32 (9x, NT, 2K, XP, …), Win64 ?
- Win CE (in progress)
- Unix (Solaris, HP, OSF, SGI, Ultrix, …)
- Linux, FreeBSD (32 bit, 64 bit)
- ELINOS
- MAC OS X
- VxWorks
- VMS (Vax, Alpha)
- LynxOS
- NIOS (plugs, single-threaded LWIP, …)
- Java

Philip Duval - TINE Overview
TINE and Connectivity to other systems

- Already embedded in DOOCS
- Epics2Tine runs on any EPICS ioc
- Connect to STARS/COACK via STARS bridge
- Tango2Tine
TINE and DOOCS

- Always a close relationship between the two.

- Imagine (we’re not there yet, but imagine anyway):
 - Download anything from doocs.desy.de; Install it and use it.
 - Download anything from tine.desy.de; Install it and use it.
 - And it all fits together seemlessly (no tweaking)!

Philip Duval - TINE Overview
TINE/DOOCS Facilities

- Petra 3
 - 2009: High-brilliance 3rd generation synchrotron radiation source
- DORIS
- Linac2/Desy2
- PIA
- FLASH
- PIZT (Zeuthen)
- EMBL Hamburg (Beamlines)
- GKSS Hamburg (Beamlines)
- PF Beamlines (KEK)
- LLRF at FermiLab
TINE Workshop

- http://tine.desy.de -> workshop 2007
TINE : Where to get it ...

- http://tine.desy.de
- Visit the *download* section and chose your platform.
- Use setup tools available.
- Installation takes a few minutes
- Don’t expect too many miracles (you might have to read a README.txt or two).

- Email to tine@desy.de