Longitudinal phase space diagnostics for ultrashort bunches with a plasma deflector

I. Dornmair1*

with C. B. Schroeder2, K. Floettmann3, B. Marchetti3, and A. R. Maier1

1CFEL, University of Hamburg, LAOLA.
2LBNL, Berkeley, USA
3DESY, Hamburg, Germany

*irene.dornmair@desy.de

LAOLA. is a collaboration of
LUX Junior Research Group

Junior Research group at CFEL and Hamburg University

commission & operate 200 TW ANGUS laser system

build and operate the LUX beamline for laser-plasma driven undulator radiation

lux.cfel.de
Laser Plasma Acceleration (LPA)

- focus high power laser pulse into plasma target
- typical laser parameters:
 - 1 - 10 J pulse energy,
 - 30 fs pulse length,
 - 20 μm spot size

photo: N. Delbos

target chamber @ LUX
Laser Plasma Acceleration (LPA)

- focus high power laser pulse into plasma target
 - typical laser parameters:
 - 1 -10 J pulse energy,
 - 30 fs pulse length,
 - 20 μm spot size

- laser excites wakefield
 - charge separation
 - typical scale: plasma wavelength 10 - 100 μm
Laser Plasma Acceleration (LPA)

- high gradients

- University of Texas: 2 GeV over 7 cm

W. Leemans et al., PRL 113, 245002 (2014)
- LBNL: 4 GeV over 9 cm
Laser Plasma Acceleration (LPA) - Beam Quality

- challenges
 - stability
 - reproducibility
 - beam quality

- originate from
 - laser and plasma stability
 - injection mechanism
Laser Plasma Acceleration (LPA) - Beam Quality

- challenges
 - stability
 - reproducibility
 - beam quality

- originate from
 - laser and plasma stability
 - injection mechanism

- diagnose bunch for feedback
- external injection
Laser Plasma Acceleration (LPA) - Beam Quality

- challenges
 - stability
 - reproducibility
 - beam quality

- originate from
 - laser and plasma stability
 - injection mechanism

 diagnose bunch for feedback

 typical bunch length $\approx 2 \text{ fs rms}^{[1,2]}$

Plasma based current profile diagnostic

- laser drives linear wakefield
- inject electron bunch off-axis in y
- experiences streaking field

Advantages:
- strong fields
- short (plasma) wavelength
- short target

I. Dornmair et al., PRAB 19, 062801 (2016)
Plasma based current profile diagnostic

- laser drives linear wakefield
- inject electron bunch off-axis in y
- experiences streaking field

I. Dornmair et al., PRAB 19, 062801 (2016)
Example: PIC simulations

- Electron beam from SINBAD LINAC [1]
 - $E_{\text{kin}} = 110$ MeV
 - $\varepsilon_{nx} = 0.09$ mm mrad
 - $\sigma_x = 17$ μm
 - detuned phase \Rightarrow spiky current profile

- external injection setup
 - diagnose bunch at injection position

SINBAD LINAC: B. Marchetti et al., Proc. IPAC2015, Richmond, TUPWA030

I. Dornmair et al., PRAB 19, 062801 (2016)
Example: PIC simulations

- Electron beam from SINBAD LINAC
 - $E_{\text{kin}} = 110$ MeV
 - $\varepsilon_{nx} = 0.09$ mm mrad
 - $\sigma_x = 17$ μm
 - detuned phase \Rightarrow spiky current profile

- Laser (3 J pulse energy)
 - $a_0 = 0.3$
 - $\tau = 41$ fs (FWHM)
 - $w_0 = 150$ μm

- Plasma:
 - $1 \cdot 10^{18} \text{ cm}^{-3}$
 - $l = 3.5$ mm
 - distance laser - beam: 34 μm
Example: PIC simulations

- Electron beam from SINBAD LINAC
 - $E_{\text{kin}} = 110$ MeV
 - $\varepsilon_{nx} = 0.09$ mm mrad
 - $\sigma_x = 17$ μm
 - detuned phase \Rightarrow spiky current profile

- Laser (3 J pulse energy)
 - $a_0 = 0.3$
 - $\tau = 41$ fs (FWHM)
 - $w_0 = 150$ μm

- Plasma:
 - $1 \cdot 10^{18}$ cm$^{-3}$
 - $l = 3.5$ mm
 - distance laser - beam: 34 μm

I. Dornmair et al., PRAB 19, 062801 (2016)
Example: PIC simulations

- Electron beam from SINBAD LINAC
 - $E_{\text{kin}} = 110$ MeV
 - $\varepsilon_{nx} = 0.09$ mm mrad
 - $\sigma_x = 17$ μm
 - detuned phase ⇒ spiky current profile

- Laser (3 J pulse energy)
 - $a_0 = 0.3$
 - $\tau = 41$ fs (FWHM)
 - $w_0 = 150$ μm

- Plasma:
 - $1 \cdot 10^{18}$ cm$^{-3}$
 - $l = 3.5$ mm
 - distance laser - beam: 34 μm

- using WARP* in the boosted frame ($\gamma_{\text{boost}} = 10$)

* thanks to the WARP team: J.-L. Vay, R. Lehe (LBNL), D. P. Grote (LBNL/LLNL)

I. Dornmair et al., PRAB 19, 062801 (2016)
Example: PIC simulations

- Electron beam from SINBAD LINAC
 - $E_{\text{kin}} = 110$ MeV
 - $\varepsilon_{nx} = 0.09$ mm mrad
 - $\sigma_x = 17$ μm
 - detuned phase \Rightarrow spiky current profile

- Laser (3 J pulse energy)
 - $a_0 = 0.3$
 - $t = 41$ fs (FWHM)
 - $w_0 = 150$ μm

- Plasma:
 - $1 \cdot 10^{18}$ cm$^{-3}$
 - $l = 3.5$ mm
 - distance laser - beam: 34 μm
Higher order field correlations

- E_y is curved in x and y
- streaking gradient smears over wide bunch
- independent of plasma length

$$\Delta \zeta \geq \frac{\sqrt{10}}{2} \left(\frac{2\sigma_y}{w_0} \right)^2 |\zeta|$$

![Graph showing phase space after interaction](image)

$E_y(x, \zeta) @ y = w_0/2$ [GV/m]
Example: PIC simulations

- Electron beam from SINBAD LINAC
 - $E_{\text{kin}} = 110$ MeV
 - $\varepsilon_{nx} = 0.09$ mm mrad
 - $\sigma_x = 17$ μm
 - detuned phase \Rightarrow spiky current profile

- Laser (3 J pulse energy)
 - $a_0 = 0.3$
 - $\tau = 41$ fs (FWHM)
 - $w_0 = 150$ μm

- Plasma:
 - $1 \cdot 10^{18}$ cm$^{-3}$
 - $l = 3.5$ mm
 - distance laser - beam: 34 μm
Example: PIC simulations

- Electron beam from SINBAD LINAC
 - $E_{\text{kin}} = 110$ MeV
 - $\varepsilon_{nx} = 0.09 \text{ mm mrad}$
 - $\sigma_x = 17 \mu$m
 - detuned phase \Rightarrow spiky current profile
- Laser (3 J pulse energy)
 - $a_0 = 0.3$
 - $\tau = 41 \text{ fs (FWHM)}$
 - $w_0 = 150 \mu$m
- Plasma:
 - $1 \cdot 10^{18} \text{ cm}^{-3}$
 - $l = 3.5 \text{ mm}$
 - distance laser - beam: 34 μm

- theoretical resolution: 96 attoseconds

$$\Delta \zeta \geq \frac{\varepsilon_{ny} m_e c^2}{\sigma_y e k V}$$
Temporal resolution - higher order correlations

- Resolution degradation from curvature:
 \[\Delta \zeta \geq \frac{\sqrt{10}}{2} \left(\frac{2\sigma_y}{w_0} \right)^2 |\zeta| \]

- Theoretical resolution: 96 attoseconds
 \[\Delta \zeta \geq \frac{\epsilon_{ny} m_e c^2}{\sigma_y e k V} \]

- Voltage \(V = 0.5 \text{MV} \)
- Wavenumber \(k = 1.9 \times 10^5 \text{m}^{-1} \)
Limitations - Beam Loading

- beam drives own wake
- modifies streaking field
- resolution degradation
 - for $Q = 0.5$ pC: $\Delta \zeta > 66$ as
 - for $Q = 10$ pC: $\Delta \zeta > 1.3$ fs
- if beam loading dominates:
 - increase laser spotsize
 - increase laser intensity

phase space after interaction
Limitations - Beam Loading

- beam drives own wake
- modifies streaking field

resolution degradation
- for $Q = 0.5$ pC: $\Delta \zeta > 66$ as
- for $Q = 10$ pC: $\Delta \zeta > 1.3$ fs

if beam loading dominates:
- increase laser spotsize
- increase laser intensity

simulated screen image
Limitations - Energy Spread

- slope of E_z
- like in TDS: induced energy spread
 - high temporal resolution \leftrightarrow low energy spread resolution
- here: accumulated 1.4 % energy spread
Limitations - Arrival Time Jitter

- timing jitter:
 - shifts beam in phase of wake
 - remain at 10% of plasma wavelength
 - 10 fs rms

- synchronization: SASE FEL pulse to IR laser @ FLASH
 - 28 fs rms
 - limited by bunch duration

- also: seeded FEL @ FERMI
 - 6 fs rms

- ASTRA simulations
 - 10 fs rms jitter
 - 50 shots at each delay
 - rel. calibration error: 6%
Good

- comes for free in external injection experiments

Bad

- need high power laser system
Good

- comes for free in external injection experiments
- intrinsically synchronized in LPA

Bad

- need high power laser system
- synchronization to laser in conventional machines
<table>
<thead>
<tr>
<th>Good</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>comes for free in external injection experiments</td>
<td>need high power laser system</td>
</tr>
<tr>
<td>intrinsically synchronized in LPA</td>
<td>synchronization to laser in conventional machines</td>
</tr>
<tr>
<td>calibration possible</td>
<td>"active" structure</td>
</tr>
<tr>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>‣ comes for free in external injection experiments</td>
<td>‣ need high power laser system</td>
</tr>
<tr>
<td>‣ intrinsically synchronized in LPA</td>
<td>‣ synchronization to laser in conventional machines</td>
</tr>
<tr>
<td>‣ calibration possible</td>
<td>‣ "active" structure</td>
</tr>
<tr>
<td>‣ direct access to phase space</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>comes for free in external injection experiments</td>
<td>need high power laser system</td>
</tr>
<tr>
<td>intrinsically synchronized in LPA</td>
<td>synchronization to laser in conventional machines</td>
</tr>
<tr>
<td>calibration possible</td>
<td>"active" structure</td>
</tr>
<tr>
<td>direct access to phase space</td>
<td></td>
</tr>
<tr>
<td>compact</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>‣ comes for free in external injection experiments</td>
<td>‣ need high power laser system</td>
</tr>
<tr>
<td>‣ intrinsically synchronized in LPA</td>
<td>‣ synchronization to laser in conventional machines</td>
</tr>
<tr>
<td>‣ calibration possible</td>
<td>‣ "active" structure</td>
</tr>
<tr>
<td>‣ direct access to phase space</td>
<td></td>
</tr>
<tr>
<td>‣ compact</td>
<td></td>
</tr>
<tr>
<td>‣ tunable frequency</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>✶ comes for free in external injection experiments</td>
<td>✶ need high power laser system</td>
</tr>
<tr>
<td>✶ intrinsically synchronized in LPA</td>
<td>✶ synchronization to laser in conventional machines</td>
</tr>
<tr>
<td>✶ calibration possible</td>
<td>✶ "active" structure</td>
</tr>
<tr>
<td>✶ direct access to phase space</td>
<td></td>
</tr>
<tr>
<td>✶ compact</td>
<td></td>
</tr>
<tr>
<td>✶ tunable frequency</td>
<td>✶ limited to low charge</td>
</tr>
<tr>
<td>✶ low charge</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>‣ comes for free in external injection experiments</td>
<td>‣ need high power laser system</td>
</tr>
<tr>
<td>‣ intrinsically synchronized in LPA</td>
<td>‣ synchronization to laser in conventional machines</td>
</tr>
<tr>
<td>‣ calibration possible</td>
<td>‣ "active" structure</td>
</tr>
<tr>
<td>‣ direct access to phase space</td>
<td>‣ limited to low charge</td>
</tr>
<tr>
<td>‣ compact</td>
<td>‣ small beam size required</td>
</tr>
<tr>
<td>‣ tunable frequency</td>
<td></td>
</tr>
<tr>
<td>‣ low charge</td>
<td></td>
</tr>
</tbody>
</table>
Good

- comes for free in external injection experiments
- intrinsically synchronized in LPA
- calibration possible
- direct access to phase space
- compact
- tunable frequency
- low charge

Bad

- need high power laser system
- synchronization to laser in conventional machines
- "active" structure
- limited to low charge
- small beam size required

ugly: no demonstration yet
Conclusion

- use plasma wakefield for bunch streaking
- strong fields and short wavelength
- temporal resolution below 1 fs
- high power laser system & synchronization needed
- well suited for laser plasma acceleration
Acknowledgement

funding

UNIVIE - M

partners

DESY - M

DESY FS-LA

LBNL

J.-L. Vay

WARP code

DESY

University of Strathclyde Glasgow

group

Florian Grüner

group

Brian McNeil

group

Jens Osterhoff

group Georg Korn

group

Johannes Bahrdt

group

LBNL

J.-L. Vay

WARP code

DESY FS-LA
Limitations: Pointing Jitter

- jitter in angle and offset:
 - shifts beam w.r.t. laser
 - streaking voltage drops
- laser stability at LUX
 - before compressor: 2 μrad rms pointing
 - after 40 m beam transport & focused: 40 μrad pointing, 6 μm offset
- good shot identification
 - center of screen
 - large extent in y
- ASTRA simulations:
 - jitter: 10 fs rms arrival time
 - 500 μrad pointing
 - 75 μm offset
 - 50 shots at each delay
 - rel. calibration error: 3 %
Laser-Driven Plasma Acceleration

ANGUS
new 200 TW laser

LUX
undulator radiation

60 m tunnel

see also lux.cfel.de
More longitudinal phase space diagnostics

- TDS cavities
 - down to 1 fs
 C. Behrens et al., Nat. Commun. 5, 3762 (2014)

- electro-optical monitors
 - around 50 fs
 R. Pompili et al., NIM A 740, 216 (2014)

- passive streaker
 - depending on charge, fs range
 S. Bettoni et al., PRAB 19, 021304 (2016)

- coherent transition radiation
 - depending on charge, no hard resolution limit
 - no unique reconstruction

- Faraday rotation
 - few fs
 A. Buck et al., Nat. Phys. 7, 543 (2011)

- coherent transition radiation
 - depending on charge, no hard resolution limit
 - no unique reconstruction

- Faraday rotation
 - few fs
 A. Buck et al., Nat. Phys. 7, 543 (2011)