Studies of Capture and Flat-Bottom Losses in the SPS

M. Schwarz, H. Bartosik, A. Lasheen, J. Repond, E. Shaposhnikova, H. Timko

Acknowledgements:
P. Baudrenghien, B. Goddard, T. Bohl, V. Kain, I. Karpov, P. Kramer, G. Papotti
SPS & PS operator team, SPS injection losses working group, BLonD dev team
Goal for High-Luminosity LHC: 2.2e11 protons per bunch (ppb) at LHC flat top
Challenge: losses in the LHC injector chain: PS booster -> PS -> SPS -> LHC
One bottleneck are losses at SPS flat bottom

1. Capture losses at PS-to-SPS RF bucket transfer:
 - Longitudinal effects (bunch shape from PS, uncaptured PS beam, …)
 - SPS LLRF system (feedback, beam phase loop, …)

2. Losses during remaining flat bottom:
 - Momentum aperture and transverse emittance
 - Full RF bucket (intensity effects, noise from LLRF, …)
Losses in the SPS

- Need to 2.6×10^{11} ppb injected into the SPS to take account for the loss budget of 10% from injection to extraction.
- Measurements in 2015 with injected 2.0×10^{11} ppb already gives 15% losses at flat bottom!

- Extrapolation to 2.6×10^{11} ppb gives 20% losses from injection to extraction [H. Bartosik et al., IPAC16, MOPOR022]
- Need better understanding to control flat bottom losses!
Losses in the SPS

Measure beam intensity in SPS with
- Bunch Current Transformer (BCT)
 - gives absolute numbers of particles in the machine
 - not fast enough to measure beam intensity during first few milliseconds after injection
 - measures all particles circulating in the machine
- integrated bunch profiles observed with wall current monitor
 - Bunch-by-bunch intensity on a turn-by-turn basis starting from injection
 - Needs to be calibrated with BCT intensity
 - Uncaptured particles above/below RF bucket are counted as well

Measured intensity along SPS flat bottom:
1. capture losses
2. flat-bottom losses
3. losses during acceleration and flat top

Uncaptured protons circulating in SPS

losses at start of acceleration
Bunches from the PS

RF manipulations in PS:

1. Initial 6 bunches split several times (6 -> 18 -> 36 -> 72) to yield 72 bunches

2. 4\sigma bunch length of 14 ns too long for 5 ns SPS RF bucket -> bunch rotation yields 4\sigma of 4 ns

Nonlinearities in the RF create particle halos!

Simulated longitudinal particle distributions after splitting and rotation in PS:

[A. Lasheen et al., Proc. Evian 2017]
Capture losses

- Intensity drop during first 2 ms: uncaptured halo particles drift away from RF bucket
- Intensity increase after ~6 ms: uncaptured particles drift above/below neighboring bunches

- Measurements with Fast BCT show that uncaptured particles have left main beam after ~500 ms
Setup:
- 72 bunches, vary intensity from 0.6e11 ppb up to 1.7e11 ppb

Aim: study if bunches injected from the PS change with intensity

Idea:
- RF-bucket area scales as $a \sim \sqrt{V}$. Voltage seen by the beam given $V = V_{RF} - V_{ind}$, where induced voltage V_{ind} depends in bunch intensity and bunch shape.
- with increasing RF-bucket area a capture losses l_{capt} decrease ($l_{capt} \sim 1/a \sim 1/\sqrt{V - V_{ind}}$) and should level off, once all beam is captured
- IF bunch shapes from the PS were independent of intensity, V_{ind} depends only on intensity and for different intensities capture losses l_{capt} would just be shifted horizontally

Observed:
- leveling of losses for $V > 4.5$ MV
- **vertical offset** with intensity
 -> more halo for higher intensity
Longitudinal beam dynamics simulations

- Longitudinal tracking code BLonD [blond.web.cern.ch]
- Different distributions from PS (0% halo, 0.3% halo, 1.1% halo)
 - 1.5 million macro-particles per bunch; 72 bunches 25ns apart
- Longitudinal SPS impedance model
- Dynamic model of one-turn delay feedback under development
- Here: model effect of feedback by multiplying impedance with feedback-reduction factor [P. Baudrenghien, Charmonix X, 2001] and time-dependent attenuation:

\[Z_n = Z_{n-1} (\Gamma_{FB})^{s \text{att}(t)} \text{ with } \text{att}(t) = 1 - e^{-\frac{t-t_{\text{start}}}{\tau}} \]

- Adjust attenuation parameters such that maximum beam loading amplitude \(V_{\text{ind}} \) at each turn agrees in simulation and measurement.

\[\Gamma_{FB} = -15.5 \text{ dB at } f_{RF} \]
Measured and simulated intensity

- 72 bunches (25ns spacing), 1.7e11 ppb, low V_{200} voltage (2.0MV) in both measurement and simulation

- Shape and time scale agree very well!
- Simulated losses too high compared to measurements...
- Also using phase loop and frequency loop in simulation gives quantitative agreement between simulated and measured intensity:
 - Similar intensity curve for all halo types
 - Absolute amount of losses strongly depends on initial halo
Bunch-by-bunch position and lengths

- Bunch displacement relative to ‘bare’ RF bucket due to beam loading
- 4σ bunch length
Bunch-by-bunch losses

Shape of measured and simulated bunch-by-bunch losses agrees well

Measured 'loss modulation' not reproduced every 4th bunch

Injected batch was not homogenous, but displayed intensity and bunch length modulation (due to bunch splitting in PS):

- every 2nd bunch
- every 4th bunch
Bunch-by-bunch losses

Simulations with 72 bunches created:
- from same distribution
- from same distribution with intensity variation similar to measurement (same bunch length)
- from distributions with different bunch lengths similar to measurement (same intensity)

- Modulation of intensity produces small modulation in losses
- Modulation of bunch length gives correct modulation of losses -> important to control bunch length at injection
Simulated capture losses for high intensity, 2.6e11 ppb

- Simulation(*), **present** SPS parameters:
 - 72 bunches, 2.6e11 ppb
 - $V_{200} = 3.5$ MV
 - Feedback strength at **-15 dB reduction**
 - Phase loop **averages over 12 bunches**
 - Two 5-section and two 4-section cavities
 - **Present** SPS impedance model

- Simulation(*), **future** upgraded SPS parameters:
 - 72 bunches, 2.6e11 ppb
 - $V_{200} = 3.5$ MV
 - Feedback strength at **-26 dB reduction**
 - Phase loop **averages over all bunches**
 - Two 4-section and four 3-section cavities
 - **Future** SPS impedance model
 (shielded vacuum flanges)

* Simulation(*) based on distribution with 1.1% tails
Flat-bottom losses

Capture losses suggest to use highest voltage to capture large amount of halos, but larger capture voltage leads to large emittance due to filamentation -> problem to accelerate

- Solution? Capture in nominal V_{200} (4.5 MV) and increase V_{200} on flat-bottom after capture to prevent particles escaping from bucket

• Decreasing V_{200} from 4.5 MV to 3.0 MV after capture drives protons out of the RF bucket, which continue to circulate in the SPS
• Increasing V_{200} to 4.5 MV to 7.0 MV captures more protons initially and no uncaptured protons are present in the SPS, but loss rate from bunches is doubled! -> limited by momentum aperture

Sources of flat-bottom losses:
• limited momentum aperture
• RF noise
• …
Optics with larger momentum aperture

- Beam with 48 bunches and reduced transverse emittance, 1.35e11 ppb
- Compare nominal optics Q20 and Q22 optics
 - higher transition energy -> voltages that yield same RF bucket area $V_{Q22} \approx 0.81 V_{Q20}$
 - larger momentum aperture

- Capture losses (blue) decrease with increasing RF bucket area
- Total losses show minimum at $V_{200} \sim 4.5$ MV because losses along flat-bottom increase for higher V_{200}
- Losses along flat-bottom (orange) for $V_{Q20} = 7.0$ MV in nominal optics Q20 are about twice as much as those for equivalent voltage of $V_{Q22} = 5.7$ MV in optics Q22 with larger momentum aperture!
Summary and conclusion

- High Luminosity LHC intensity of 2.2×10^{11} ppb at LHC flat top requires 2.6×10^{11} ppb at injection in the SPS and a loss budget of 10%.
- One bottleneck for these high intensities are losses in the SPS at flat bottom.
- Capture losses occur at the PS bunch to SPS RF bucket transfer
 - Caused by halo particles outside and close to the SPS RF bucket
 - Increase with intensity due to increased beam loading and larger halo
- Capture losses are reproduced in longitudinal tracking simulations that include SPS intensity effects, feedback system, and beam phase loop.
- Based on simulations, capture losses for future upgraded SPS are 2%.
- Further losses occur during the SPS flat bottom, caused among others by a limited momentum aperture:
 - Flat-bottom losses are reduced optics with larger momentum aperture
 - Beams with reduced transverse emittance have smaller flat-bottom losses

Outlook:
- Need to include particle loss due to momentum aperture in simulations to model larger time scales (>1 s)
- A physical aperture limitation was recently discovered [V. Kain et al., SPS injection losses review, CERN 2017] and will be fixed during upcoming long shutdown.
- RF noise (in particular feedforward system) as another contributor to flat-bottom losses is currently under investigation.

Thank you for your attention!
Losses for different transverse emittances

- **48 bunches**, 25ns spacing, **1.52e11 particles per bunch**
- $V_{800} = 0.1 V_{200}$
- Flat-bottom 0-11.1s, ramp to 450GeV 11.1-19.5s, flat-top 19.5-20s
- Here: data from injection to first part of ramp (11.830s ~ 29 GeV)
- Inject at $V_{200}=4.5MV$ (nominal case), **change V_{200} at flat-bottom** (ramp 50ms to 100ms after injection and at 10.75s to 10.85s)
- Compare Q_{20} **LHC25ns** and **BCMS** *(transverse emittance reduced by factor 2)*

- **Less losses for BCMS** *(smaller transverse emittance)*
- **Minimal losses at $V_{200}=4.5MV$**
First results with dynamic OTFB

Motivation:
- Previously, SPS OTFB modeled by ‘impedance reduction’, i.e. no dynamic implementation
- Dynamic OTFB developed for BLonD (H. Timko)
- Here, present first comparisons with measurements

Measurements:
- 48 bunches, 1.48e11 ppb
- \(V_{200} = 4.5\) MV, Q22 optic

Simulation parameters:
- 48 bunches, 1M macro-particles per bunch
- \(V_{200} = 4.5\) MV, Q22 optic
- Present full SPS impedance model

Present ‘best settings’ (G_LLRF_4 = 8.0, G_LLRF_5 = 10.0)

Results:
- Induced voltage in short TWC ‘undershoots’ around turn 10; asymptotic behavior represented well
- For long TWC, OTFB does not reduce induced voltage enough -> need to adjust gain margin
Profile analysis

1. **Raw data**

2. **Apply transfer-function correction**

3. **Remove baseline**

4. **Detect bunches**

5. **Ignore boundary points**
Losses in the SPS

Need to 2.6e11 ppb injected into the SPS to take account for the loss budget of 10% from injection to extraction.

Measurements in 2015 with injected 2.0e11 ppb already gives 15% losses at flat bottom!

[H. Bartosik et al., SPS injection loss review, CERN, 2017]

Need better understanding to control losses.

Measured intensity along SPS flat bottom reveals:
1. capture losses
2. flat-bottom losses
3. losses during acceleration and flat top
Bunch-by-bunch losses

✓ Shape of measured and simulated bunch-by-bunch losses agrees well

! Measured ‘loss modulation’ not reproduced

Injected batch was not homogenous, but displayed intensity and bunch length modulation (due to bunch splitting in PS):