Halo formation of the gaussian density beam in periodic solenoidal focusing field

61th ICFA Advanced Beam Dynamics Workshop
on High-intensity and High-brightness Hadron beams (HB 2018)
In Daejeon

Yoolim Cheon and Moses Chung,
Intense Beam and Accelerator Laboratory (IBAL),
Ulsan National Institute of Science and Technology (UNIST)
Contents

- High-intensity charged-particle beam in a periodic solenoidal focusing field
 - Beam physics applications
 - Nonlinear resonances and chaotic motions of envelope oscillation

- Halo formation of transverse particle-core model
 - Halo formations
 - Uniform density charged particle motions
 - Gaussian density charged particle motions of matched beam

- Summary
High-intensity charged-particle beam physics

Applications
Applications
High-intensity charged-particle beam physics

Applications

astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties
Applications

astrophysical nuclear reactions
carrying the nucleosynthetic processes and nuclear properties
High-intensity charged-particle beam physics

Applications

- Astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties
- High energy particle physics
High-intensity charged-particle beam physics

Applications

- astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties
- high energy particle physics
High-intensity charged-particle beam physics

Applications

- astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties
- high energy particle physics
- nuclear waste transmutation
High-intensity charged-particle beam physics

Applications

- Astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties
- High energy particle physics
- Nuclear waste transmutation

Accelerator
- (600 MeV - 4 mA proton)

Reactor
- Subcritical or Critical modes
- 65 to 100 MWth

Spallation Source

Multipurpose Flexible Irradiation Facility

Fast Neutron Source

Lead-Bismuth coolant

Nuclear waste transmutation

Available testing volume and dpa
- High >20 dpa/y in 0.5 liters
- Medium >1 dpa/y in 6 liters
- Low <1 dpa/y in 6 liters
High-intensity charged-particle beam physics

Applications

- astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties
- high energy particle physics
- fusion material test (IFMIF)
- nuclear waste transmutation

Accelerator
- (600 MeV – 4 mA proton)

Reactor
- Subcritical or Critical modes
- 65 to 100 MWth

Multipurpose Flexible Irradiation Facility

- Spallation Source
- Lead-Bismuth coolant

RF Power
- Lithium Target
- Beam footprint 200 x 50 mm²

Input source
- High > 20 dpa/yr in 0.5 liters
- Medium > 1 dpa/yr in 6 liters
- Low < 1 dpa/yr in 6 liters
High-intensity charged-particle beam physics

Applications

- astrophysical nuclear reactions carrying the nucleosynthetic processes and nuclear properties
- high energy particle physics
- fusion material test (IFMIF)
- nuclear waste transmutation
- HWR - Solenoidal focusing
High-intensity charged-particle beam physics

Periodic solenoidal focusing field
High-intensity charged-particle beam physics

• Periodic solenoidal focusing field
Periodic solenoidal focusing field

• Periodic solenoidal focusing field

\[\kappa_z(s) = \kappa_z(s + S) = \left(\frac{B_{Z0}(s)}{2 [B \rho]} \right)^2 = \left(\frac{\omega_c(s)}{2 \gamma_b \beta_b c} \right)^2 \]
High-intensity charged-particle beam physics

- Periodic solenoidal focusing field

\[
\kappa_z(s) = \kappa_z(s + S) = \left(\frac{B_{z0}(s)}{2|B\rho|} \right)^2 = \left(\frac{\omega_c(s)}{2\gamma_b \beta b c} \right)^2
\]
Periodic solenoidal focusing field

- Periodic solenoidal focusing field

\[
\kappa_z(s) = \kappa_z(s + S) = \left(\frac{B_{z0}(s)}{2[B \rho]} \right)^2 = \left(\frac{\omega_c(s)}{2\gamma_b\beta_b c} \right)^2
\]

- The dynamics of the charged particle is easily analyzed in the Larmour frame, which rotates with the Larmour frequency around the axis of the solenoid

- Much simpler and cheaper

- Rotationally symmetric

- For a given beam emittance, the solenoid aperture required is smaller than that of the quadrupole
Periodic solenoidal focusing field

- Periodic solenoidal focusing field

\[\kappa_z(s) = \kappa_z(s + S) = \left(\frac{B_{z0}(s)}{2 [B \rho]} \right)^2 = \left(\frac{\omega_c(s)}{2 \gamma_b \beta_b c} \right)^2 \]

- The dynamics of the charged particle is easily analyzed in the Larmour frame, which rotates with the Larmour frequency around the axis of the solenoid.

- Much simpler and cheaper

- Rotationally symmetric

- For a given beam emittance, the solenoid aperture required is smaller than that of the quadrupole.

Normalized envelope equation

- Introduce the dimensionless parameters and variables,

\[\frac{s}{S} \rightarrow s, \quad \frac{r_b}{\sqrt{\varepsilon S}} \rightarrow r_b, \quad S^2 \kappa_z \rightarrow \kappa_z, \quad \frac{SK}{\varepsilon} \rightarrow K \]

- With symmetric envelope radius, \(r_x(s) = r_y(s) \equiv r_b(s) \)

- The normalized envelope equation

\[r_b''(s) + \kappa_z(s) r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0 \]

- Space charge defocusing: \(K \equiv \frac{2q\lambda}{\gamma_b^2 \beta_b^2 mc^2} : \) Pervance

\[\sigma_0 \equiv \int_0^1 \sqrt{\kappa_z(s)} \, ds = \int_0^1 \sqrt{\eta \kappa_z(0)} \, ds = \sqrt{\eta \kappa_z(0)} \]

: undepressed (vacuum) phase advance

- \(\sigma \equiv \int_0^1 \frac{ds}{r_b^2(s)} : \) depressed phase advance (normalized)
Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s) r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter $\kappa_z(0)$</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79$, $\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16$, $r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79$, $\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3$, $r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2$, $\eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4$, $r_b'(0) = 0$</td>
</tr>
</tbody>
</table>
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(phase plane $r_b - r_b'$)

$$r''_b(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79$ $\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16$, $r'_b(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79$ $\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3$, $r'_b(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2$ $\eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4$, $r'_b(0) = 0$</td>
</tr>
</tbody>
</table>
Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>k</th>
<th>$\kappa_z(0) = 3.79$</th>
<th>$\eta = \frac{1}{6}$</th>
<th>$\sigma_0 = 45.5^\circ$</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$r_b(0) = 1.16$</td>
<td>$r'_b(0) = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$r_b(0) = 2.3$</td>
<td>$r'_b(0) = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$r_b(0) = 1.4$</td>
<td>$r'_b(0) = 0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r'_b(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r'_b(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r'_b(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(Phase plane $r_b - r_b'$)

\[r_b''(s) + \kappa_z(s) r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0 \]

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(phase plane r_b - r_b')

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(Phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge pereveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in **every S lattice period** (Poincare surface of section plots) with different envelope initial conditions for propagation **over 300 lattice periods**

Matched beam in solenoidal focusing (equilibrium envelope radius)

$$r_b(s) = r_b(s + S) = \text{const.}$$
Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s) r_b(s) \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

Space charge perveance (K)	Focusing field parameter	Vacuum phase advance (σ_0)	Matched beam initial condition
0 | $\kappa_z(0) = 3.79, \eta = \frac{1}{6}$ | 45.5° | $r_b(0) = 1.16, r'_b(0) = 0$
3 | $\kappa_z(0) = 3.79, \eta = \frac{1}{6}$ | 45.5° | $r_b(0) = 2.3, r'_b(0) = 0$
5 | $\kappa_z(0) = 24.2, \eta = \frac{1}{6}$ | 115° | $r_b(0) = 1.4, r'_b(0) = 0$

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.

Matched beam in solenoidal focusing
(equilibrium envelope radius)

$$r_b(s) = r_b(s + S) = \text{const.}$$
Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(phase plane $r_b - r'_b$)

$$r''_b(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r'_b(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r'_b(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r'_b(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.

Matched beam in solenoidal focusing
(equilibrium envelope radius)

$$r_b(s) = r_b(s + S) = \text{const.}$$
Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.

Matched beam in solenoidal focusing
(equilibrium envelope radius)

$$r_b(s) = r_b(s + S) = \text{const.}$$

Mismatched beam in solenoidal focusing

$$r(s) = r_b(s; \text{matched}) + \delta r$$
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_b - r'_b$)

$$r''_b(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79$, $\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16$, $r'_b(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79$, $\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3$, $r'_b(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2$, $\eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4$, $r'_b(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_b - r_b'$)

\[r''_b(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0 \]

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79$, $\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r'_b(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79$, $\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r'_b(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2$, $\eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r'_b(0) = 0$</td>
</tr>
</tbody>
</table>

n-th order resonance

\[r(s) = r_b(s; matched) + \delta r, \quad \delta r(s) = \delta r(0) \cos(k_n s) \]

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79 \ , \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16 \ , r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79 \ , \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3 \ , r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2 \ , \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4 \ , r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.

4-th

5-th

n-th order resonance

$$r(s) = r_b(s; \text{matched}) + \delta r \ , \ \delta r(s) = \delta r(0) \cos(k_n s)$$
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(Phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

n-th order resonance

$$r(s) = r_b(s; matched) + \delta r, \; \delta r(s) = \delta r(0)\cos(k_n s)$$

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.

n-th order resonance

$$r(s) = r_b(s; matched) + \delta r, \delta r(s) = \delta r(0) \cos(k_n s)$$
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(phase plane $r_b - r'_b$

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r'_b(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r'_b(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r'_b(0) = 0$</td>
</tr>
</tbody>
</table>

n-th order resonance

$$r(s) = r_b(s; \text{matched}) + \delta r, \delta r(s) = \delta r(0) \cos(k_n s)$$

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_b - r'_b$)

$$r''_b(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter $\kappa_z(0)$</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r'_b(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r'_b(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r'_b(0) = 0$</td>
</tr>
</tbody>
</table>

n-th order resonance

$$r(s) = r_b(s; matched) + \delta r, \delta r(s) = \delta r(0) \cos(k_n s)$$

$n=5$; 5-th order resonance \hspace{1cm} $k = k_5 = \frac{2\pi l}{5}$

if $s = 5, 10, 15, \ldots$,

the perturbed radius comes back its starting point
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations
(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5$^\circ$</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5$^\circ$</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115$^\circ$</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(Phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s)r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>45.5°</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>115°</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods.
High-intensity charged-particle beam physics

Nonlinear resonances and chaotic motions of envelope oscillation

Envelope oscillations

(phase plane $r_b - r_b'$)

$$r_b''(s) + \kappa_z(s) r_b(s) - \frac{K}{r_b(s)} - \frac{1}{r_b^3(s)} = 0$$

<table>
<thead>
<tr>
<th>Space charge perveance (K)</th>
<th>Focusing field parameter</th>
<th>Vacuum phase advance (σ_0)</th>
<th>Matched beam initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>$\epsilon = 45.5^\circ$</td>
<td>$r_b(0) = 1.16, r_b'(0) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\kappa_z(0) = 3.79, \eta = \frac{1}{6}$</td>
<td>$\epsilon = 45.5^\circ$</td>
<td>$r_b(0) = 2.3, r_b'(0) = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\kappa_z(0) = 24.2, \eta = \frac{1}{6}$</td>
<td>$\epsilon = 115^\circ$</td>
<td>$r_b(0) = 1.4, r_b'(0) = 0$</td>
</tr>
</tbody>
</table>

All points are plotted in every S lattice period (Poincare surface of section plots) with different envelope initial conditions for propagation over 300 lattice periods
Contents

- High-intensity charged-particle beam in a periodic solenoidal focusing field
 - Beam physics applications
 - Nonlinear resonances and chaotic motions of envelope oscillation

- Halo formation of transverse particle-core model
 - Halo formations
 - Uniform density charged particle motions
 - Gaussian density charged particle motions of matched beam

- Summary
Halo formation of transverse particle-core model

Halo formations of particles along the linac
Halo formation of transverse particle-core model

Halo formations of particles along the linac
Halo formation of transverse particle-core model

Halo formations of particles along the linac

- Beam emittance growth and particle losses in accelerators
Halo formation of transverse particle-core model

Halo formations of particles along the linac

→ Beam emittance growth and particle losses in accelerators →
Halo formation of transverse particle-core model

Halo formations of particles along the linac

→ Beam emittance growth and particle losses in accelerators → Radioactivation
Halo formation of transverse particle-core model

Halo formations of particles along the linac

Beam emittance growth and particle losses in accelerators Radioactivation

- Uniform charge density
Halo formation of transverse particle-core model

Halo formations of particles along the linac

- Beam emittance growth and particle losses in accelerators
- Radioactivation

• Uniform charge density

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Matched</th>
<th>Beam core oscillates periodically in every lattice period</th>
<th>Envelope oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mis-matched</td>
<td>Beam core oscillates because of initial mismatch & Space charge effect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n-th order resonance</td>
<td></td>
<td>Particle frequency</td>
</tr>
</tbody>
</table>
Halo formation of transverse particle-core model

- Halo formations of particles along the linac
 - Beam emittance growth and particle losses in accelerators
 - Radioactivation

- Uniform charge density

| Envelope | Matched | Beam core oscillates periodically in every lattice period | Beam core oscillates because of initial mismatch & Space charge effect | Envelope oscillation
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mis-matched</td>
<td></td>
<td></td>
<td>Resonance</td>
</tr>
<tr>
<td></td>
<td>n-th order resonance</td>
<td></td>
<td></td>
<td>Particle frequency</td>
</tr>
</tbody>
</table>
Halo formation of transverse particle-core model

Halo formations of particles along the linac

→ Beam emittance growth and particle losses in accelerators → Radioactivation

• Uniform charge density

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Matched</th>
<th>Beam core oscillates periodically in every lattice period</th>
<th>Mis-matched</th>
<th>Beam core oscillates because of initial mismatch & Space charge effect</th>
<th>n-th order resonance</th>
<th>Envelope oscillation Resonance Particle frequency</th>
</tr>
</thead>
</table>

• Non-uniform charge density (Gaussian)
Halo formation of transverse particle-core model

Halo formations of particles along the linac

→ Beam emittance growth and particle losses in accelerators → Radioactivation

- Uniform charge density

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Matched</th>
<th>Beam core oscillates periodically in every lattice period</th>
<th>Envelope oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mis-matched</td>
<td>Beam core oscillates because of initial mismatch & Space charge effect</td>
<td>Resonance</td>
<td></td>
</tr>
<tr>
<td>n-th order resonance</td>
<td></td>
<td></td>
<td>Particle frequency</td>
</tr>
</tbody>
</table>

- Non-uniform charge density (Gaussian)

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Matched</th>
<th>Gaussian density profile</th>
<th>Non-linear space charge force</th>
</tr>
</thead>
</table>

Gaussian density profile
Halo formation of transverse particle-core model

Halo formations of particles along the linac

Beam emittance growth and particle losses in accelerators → Radioactivation

- External: **periodic solenoidal magnetic focusing field**
- Uniform charge density

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Matched</th>
<th>Beam core oscillates periodically in every lattice period</th>
<th>Envelope oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mis-matched</td>
<td>Beam core oscillates because of initial mismatch & Space charge effect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n-th order resonance</td>
<td></td>
<td>Resonance</td>
</tr>
</tbody>
</table>

- Non-uniform charge density (**Gaussian**)

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Matched</th>
<th>Gaussian density profile</th>
<th>Non-linear space charge force</th>
</tr>
</thead>
</table>
Halo formation of transverse particle-core model

Uniform density charged particle motions
Halo formation of transverse particle-core model

Uniform density charged particle motions

Equation of motion (Larmor frame)
Halo formation of transverse particle-core model

Uniform density charged particle motions

Equation of motion (Larmor frame)

\[x''(s) + \kappa_z(s)x(s) - KF(x, r_b) = 0 \]

\[F(x, r_b) = \begin{cases} \frac{x(s)}{r_b^2(s)} & \text{for } x(s) < r_b(s), \\ \frac{1}{x(s)} & \text{for } x(s) > r_b(s) \end{cases} \]
Halo formation of transverse particle-core model

Uniform density charged particle motions

Equation of motion (Larmor frame)

(Phase plane \(x/r_b - x\))

\[
x''(s) + \kappa_z(s)x(s) - KF(x, r_b) = 0
\]

\[
F(x, r_b) = \frac{x(s)}{r_b^2(s)} \text{ for } x(s) < r_b(s), \quad \frac{1}{x(s)} \text{ for } x(s) > r_b(s)
\]
Halo formation of transverse particle-core model

Uniform density charged particle motions

Equation of motion (Larmor frame) (phase plane $x/r_b - x'$)

$$x''(s) + \kappa_z(s)x(s) - KF(x,r_b) = 0$$

$$F(x,r_b) = \frac{x(s)}{r_b^2(s)} \text{ for } x(s) < r_b(s), \quad \frac{1}{x(s)} \text{ for } x(s) > r_b(s)$$

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods.
Halo formation of transverse particle-core model

Uniform density charged particle motions

Equation of motion (Larmor frame)

(phase plane $x/r_b \cdot x'$)

$$x''(s) + \kappa_z(s)x(s) - KF(x, r_b) = 0$$

$$F(x, r_b) = \frac{x(s)}{r_b^2(s)} \text{ for } x(s) < r_b(s), \quad \frac{1}{x(s)} \text{ for } x(s) > r_b(s)$$

Matched core – test particles

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods
Halo formation of transverse particle-core model

Uniform density charged particle motions

Equation of motion (Larmor frame)

(Phase plane $x/r_b - x'$)

$$x''(s) + \kappa_z(s)x(s) - KF(x, r_b) = 0$$

$$F(x, r_b) = \frac{x(s)}{r_b^2(s)} \text{ for } x(s) < r_b(s), \quad \frac{1}{x(s)} \text{ for } x(s) > r_b(s)$$

Matched core – test particles

- $K = 0$
 - $\sigma_0 = 45.5^\circ$

- $K = 3$
 - $\sigma_0 = 45.5^\circ$

Mismatched core – test particles

- $K = 3$
 - $\sigma_0 = 45.5^\circ$

All points are plotted in every 5 lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods.
Halo formation of transverse particle-core model

Uniform density charged particle motions

Equation of motion (Larmor frame)

(Phase plane $x/r_b - x'$)

$$x''(s) + \kappa_z(s)x(s) - KF(x, r_b) = 0$$

$$F(x, r_b) = \frac{x(s)}{r_b^2(s)} \text{ for } x(s) < r_b(s), \quad \frac{1}{x(s)} \text{ for } x(s) > r_b(s)$$

Matched core – test particles

- $K = 0$
 - $\sigma_0 = 45.5^\circ$

- $K = 3$
 - $\sigma_0 = 45.5^\circ$

Mismatched core – test particles

- $K = 3$
 - $\sigma_0 = 45.5^\circ$

All points are plotted in every 5 lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods.

5th resonance core – test particles (plot in every 5 period)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

For Gaussian charge density,

$$\rho(x) = \frac{\lambda}{2\pi\sigma_x\sigma_y} \exp \left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} \right)$$

$$E_{sc,x}(x, y) = 2\lambda \frac{1 - e^{-r^2/\sigma^2}}{r^2} x$$
$$E_{sc,y}(x, y) = 2\lambda \frac{1 - e^{-r^2/\sigma^2}}{r^2} y$$

$$r^2 = x^2 + y^2$$
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

For Gaussian charge density,

\[
\rho(x) = \frac{\lambda}{2\pi\sigma_x\sigma_y} \exp\left(\frac{-x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right)
\]

\[
E_{sc,x}(x,y) = 2\lambda \frac{1 - e^{-r^2/\sigma^2}}{r^2} x, \quad E_{sc,y}(x,y) = 2\lambda \frac{1 - e^{-r^2/\sigma^2}}{r^2} y
\]

\[
r^2 = x^2 + y^2
\]

For symmetric case, \(\sigma_r = \sqrt{2}\sigma_x = \sqrt{2}\sigma_y \)

\[
\rho(r) = \frac{\lambda}{\pi\sigma_r^2} \exp\left(-\frac{r^2}{\sigma_r^2}\right)
\]

\[
E_{sc,r}(r) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r}
\]
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

For Gaussian charge density,

\[
\rho(x) = \frac{\lambda}{2\pi\sigma_x\sigma_y} \exp \left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} \right)
\]

\[
E_{sc,x}(x,y) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r^2} x,
\]

\[
E_{sc,y}(x,y) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r^2} y
\]

\[
r^2 = x^2 + y^2
\]

For symmetric case, \(\sigma_r = \sqrt{2}\sigma_x = \sqrt{2}\sigma_y \)

\[
\rho(r) = \frac{\lambda}{\pi\sigma_r^2} \exp\left(-\frac{r^2}{\sigma_r^2}\right)
\]

\[
E_{sc,r}(r) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r}
\]

\[
\sigma_r(s) = n_b/\sqrt{2}
\]

(equivalent beams)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

For Gaussian charge density,

\[\rho(x) = \frac{\lambda}{2\pi \sigma_x \sigma_y} \exp \left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} \right) \]

\[E_{sc,x}(x,y) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r} x, \quad E_{sc,y}(x,y) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r} y \]

\[r^2 = x^2 + y^2 \]

For symmetric case, \(\sigma_r = \sqrt{2}\sigma_x = \sqrt{2}\sigma_y \)

\[\rho(r) = \frac{\lambda}{\pi \sigma_r^2} \exp(-\frac{r^2}{\sigma_r^2}) \]

\[E_{sc,r}(r) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r} \]

Equation of motion (real frame)

Coupled equation of motion

\[\begin{cases} x''(s) - 2\sqrt{\kappa_x(s)}y'(s) - \frac{K}{2} F_{sc,x}(x,y) = 0 \\ y''(s) + 2\sqrt{\kappa_x(s)}x'(s) - \frac{K}{2} F_{sc,y}(x,y) = 0 \end{cases} \]

\[F_{sc,x}(x,y) = 2 \frac{1 - e^{-r^2/\sigma_r^2}}{r^2} x \]

\[F_{sc,y}(x,y) = 2 \frac{1 - e^{-r^2/\sigma_r^2}}{r^2} y \]

When \(p_\theta \neq 0 \), \(\gamma' = \gamma'' = 0 \)

\[\sigma_r(s) = \frac{r_b}{\sqrt{2}} \]

(equivalent beams)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Space charge field of gaussian density particles

For Gaussian charge density,

\[
\rho(x) = \frac{\lambda}{2\pi\sigma_x\sigma_y} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right)
\]

\[
E_{sc,x}(x,y) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r} x,
E_{sc,y}(x,y) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r} y
\]

\[r^2 = x^2 + y^2\]

For symmetric case, \(\sigma_r = \sqrt{2}\sigma_x = \sqrt{2}\sigma_y\)

\[
\rho(r) = \frac{\lambda}{\pi\sigma_r^2} \exp\left(-\frac{r^2}{\sigma_r^2}\right)
\]

\[
E_{sc,r}(r) = 2\lambda \frac{1 - e^{-r^2/\sigma_r^2}}{r}
\]

(\text{equivalent beams})

Equation of motion (real frame)

Coupled equation of motion

\[
\begin{aligned}
x''(s) - 2\sqrt{\kappa_2(s)}y'(s) - \frac{K}{2} F_{sc,x}(x,y) &= 0 \\
y''(s) + 2\sqrt{\kappa_2(s)}x'(s) - \frac{K}{2} F_{sc,y}(x,y) &= 0
\end{aligned}
\]

When \(p_\theta \neq 0\), \(\gamma' = \gamma'' = 0\)

Radial equation of motion (real frame)

\[
\begin{aligned}
r''(s) + \kappa_2(s)r(s) - \frac{K}{2} F_{sc}(r) &= 0 \\
F_{sc}(r) &= 2 \frac{1 - e^{-r^2/\sigma_r^2}}{r}
\end{aligned}
\]

When \(p_\theta = 0\), \(y = y' = 0\), \(\gamma' = \gamma'' = 0\)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion (phase plane r/r_b-r')

$$r''(s) + \kappa_z(s)r(s) - \frac{K}{2} F_{sc}(r) = 0$$

$$F_{sc}(r) = 2 \frac{1 - e^{-r^2/\sigma_r^2}}{r}$$

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods.
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

(phase plane r/r_b-r')

\[
r''(s) + \kappa z(s)r(s) - \frac{K}{2} F_{sc}(r) = 0
\]

\[
F_{sc}(r) = 2 \frac{1 - e^{-r^2/\sigma^2}}{r}
\]

\[K=0, \ \sigma_0 = 45.5^\circ, \sigma = 46^\circ \]

\[\sigma/\sigma_0 = 1\]
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

\[r''(s) + \kappa_2(s)r(s) - \frac{K}{2} F_{sc}(r) = 0 \]

\[F_{sc}(r) = 2 \frac{1 - e^{-r^2/\sigma^2}}{r} \]

\[K=3, \sigma = 45.5^\circ, \sigma = 12^\circ \]

\[\frac{\sigma}{\sigma_0} = 0.26 \]
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

\[r''(s) + \kappa_z(s)r(s) - \frac{K}{2} F_{sc}(r) = 0 \]

\[F_{sc}(r) = 2 \frac{1 - e^{-r^2/\sigma^2}}{r} \]

\[K=0, \quad \sigma_0 = 45.5^\circ, \sigma = 46^\circ \]
\[\frac{\sigma}{\sigma_0} = 1 \]

\[K=2.3, \quad \sigma_0 = 115^\circ, \sigma = 90^\circ \]
\[\frac{\sigma}{\sigma_0} = 0.78 \]

\[K=3, \quad \sigma_0 = 45.5^\circ, \sigma = 12^\circ \]
\[\frac{\sigma}{\sigma_0} = 0.26 \]

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods.
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

\[r''(s) + \kappa(s) r(s) - \frac{K}{2} F_{sc}(r) = 0 \]

\[F_{sc}(r) = 2 \frac{1 - e^{-r^2/\sigma^2}}{r} \]

\[K=2.3, \quad \sigma_0 = 115^\circ, \quad \sigma = 90^\circ \]
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

\[r''(s) + \kappa_z(s)r(s) - \frac{K}{2} F_{sc}(r) = 0 \]

\[F_{sc}(r) = 2 \left(1 - \frac{r^2/\sigma_r^2}{r} \right) \]

\[e^{-r^2/\sigma_r^2} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{r^2}{\sigma_r^2} \right)^n \]

K = 2.3, \(\sigma_0 = 115^\circ \), \(\sigma = 90^\circ \)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

\[
r''(s) + \kappa_z(s)r(s) - \frac{K}{2} F_{sc}(r) = 0
\]

\[
F_{sc}(r) = 2 \left(1 - e^{-r^2/\sigma_r^2}\right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{r^2}{\sigma_r^2}\right)^n
\]

With \(n \leq 2\); \(n=1\) (linear), \(n=2\) (2nd order)

\(- r'''(s) + \sigma_{\perp}^2 r(s) \sim r^3 \cdot e^{i\sigma_{\text{env}} s} ; r \sim e^{\pm i\sigma_s}
\]

< Resonance condition >

\(- > \sigma_{\text{env}} = 4\sigma_{\perp} ; \sigma_{\text{env}} = 360^\circ\) (matched beam)

\(- > \sigma_{\perp} = 90^\circ : 4^{\text{th}}\text{order resonance}
\]

\(K=2.3 , \sigma_0 = 115^\circ , \sigma = 90^\circ\)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

\[r''(s) + \kappa_z(s) r(s) - \frac{K}{2} F_{sc}(r) = 0 \]

\[F_{sc}(r) = 2 \frac{1 - e^{-r^2/\sigma_r^2}}{r} \]

\[e^{-r^2/\sigma_r^2} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{r^2}{\sigma_r^2} \right)^n \]

With \(n \leq 2 \); \(n = 1 \) (linear), \(n = 2 \) (2nd order)

\[r''(s) + \sigma_r^2 r(s) \sim r^3 \cdot e^{i\sigma_{env} s} ; r \sim e^{\pm i\sigma_s} \]

< Resonance condition >

\[\sigma_{env} = 4\sigma_r ; \sigma_{env} = 360^\circ \] (matched beam)

\[\sigma_r = 90^\circ : 4^{th} order resonance \]

K=2.3 , \(\sigma_0 = 115^\circ \) , \(\sigma = 90^\circ \)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

\[r''(s) + \kappa_z(s)r(s) - \frac{K}{2} F_{sc}(r) = 0 \]

\[F_{sc}(r) = 2 \left(1 - \frac{e^{-r^2/\sigma_r^2}}{r} \right) \]

\[e^{-r^2/\sigma_r^2} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{r^2}{\sigma_r^2}\right)^n \]

With \(n \leq 2 \); \(n = 1 \) (linear), \(n = 2 \) (2nd order)

- \(r''(s) + \sigma_r^2 r(s) \sim r^3 \cdot e^{i\sigma_{env} s} ; r \sim e^{i\sigma_{ls} s} \)

< Resonance condition >

- \(\sigma_{env} = 4\sigma_{\perp} \); \(\sigma_{env} = 360^\circ \) (matched beam)

- \(\sigma_{\perp} = 90^\circ : 4^{th}\text{order resonance} \)

K=2.3 , \(\sigma_0 = 115^\circ \), \(\sigma = 90^\circ \)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

\[r''(s) + \kappa_z(s)r(s) - \frac{K}{2} F_{sc}(r) = 0 \]

\[F_{sc}(r) = 2 \left(1 - e^{-r^2/\sigma_r^2} \right) \]

\[e^{-r^2/\sigma_r^2} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{r^2}{\sigma_r^2} \right)^n \]

With \(n \leq 2 \); \(n=1 \) (linear), \(n=2 \) (2nd order)

\[\rightarrow r''(s) + \sigma_\perp^2 r(s) \sim r^3 \cdot e^{i\sigma_{env}s} ; r \sim e^{\pm i\sigma_{\perp}s} \]

< Resonance condition >

\[\rightarrow \sigma_{env} = 4\sigma_\perp ; \sigma_{env} = 360^\circ \text{ (matched beam)} \]

\[\rightarrow \sigma_{\perp} = 90^\circ : 4^{th} \text{order resonance} \]

\[K=2.3 , \sigma_0 = 115^\circ , \sigma = 90^\circ \]
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Radial equation of motion

\[r''(s) + \kappa_z(s) r(s) - \frac{K}{2} F_{sc}(r) = 0 \]

\[
F_{sc}(r) = 2 \frac{1 - e^{-r^2/\sigma_r^2}}{r} \quad e^{-r^2/\sigma_r^2} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-r^2}{\sigma_r^2} \right)^n
\]

With \(n \leq 2 \); \(n=1 \) (linear), \(n=2 \) (2nd order)

\[r''(s) + \sigma_r^{-2} r(s) \sim r^{-3} \cdot e^{i\sigma_{env}s} ; r \sim e^{\pm i\sigma z s} \]

< Resonance condition >

\[\sigma_{env} = 4\sigma_z ; \sigma_{env} = 360^\circ \text{ (matched beam)} \]

\[\sigma_z = 90^\circ : 4^{th} \text{ order resonance} \]

\[K=2.3 , \sigma_0 = 115^\circ , \sigma = 90^\circ \]
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Coupled equation of motion

\[
\begin{align*}
 x''(s) &= 2\sqrt{\kappa_x(s)}y'(s) - \frac{K}{2}F_{sc.x}(x, y) = 0 \\
 y''(s) &= 2\sqrt{\kappa_y(s)}x'(s) - \frac{K}{2}F_{sc.y}(x, y) = 0
\end{align*}
\]

\[
F_{sc.x}(x, y) = 2\frac{1 - e^{-r^2/\sigma^2}}{r^2} x
\]
\[
F_{sc.y}(x, y) = 2\frac{1 - e^{-r^2/\sigma^2}}{r^2} y
\]

All points are plotted in every 5 lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods.
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Coupled equation of motion

\[
\begin{align*}
 x''(s) - 2\sqrt{\kappa_z(s)}y'(s) - \frac{K}{2} F_{sc,x}(x, y) &= 0 \\
y''(s) + 2\sqrt{\kappa_z(s)}x'(s) - \frac{K}{2} F_{sc,y}(x, y) &= 0
\end{align*}
\]

\[
F_{sc,x}(x, y) = 2 \frac{1 - e^{-r^2/\sigma_r^2}}{r^2} x
\]

\[
F_{sc,y}(x, y) = 2 \frac{1 - e^{-r^2/\sigma_{ry}^2}}{r^2} y
\]

Many test particles with different initial conditions

All points are plotted in every S lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods.
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Coupled equation of motion

\[
\begin{align*}
x''(s) - 2\sqrt{\kappa_z(s)}y'(s) - \frac{K}{2}F_{sc,x}(x, y) &= 0 \\
y''(s) + 2\sqrt{\kappa_z(s)}x'(s) - \frac{K}{2}F_{sc,y}(x, y) &= 0
\end{align*}
\]

\[
F_{sc,x}(x, y) = 2 \frac{1 - e^{-r^2/\sigma^2}}{r^2} x
\]

\[
F_{sc,y}(x, y) = 2 \frac{1 - e^{-r^2/\sigma^2}}{r^2} y
\]

Many test particles with different initial conditions

(\text{phase plane } x/r_b - x', y/r_b - y', x/r_b - y/r_b)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions (real frame)

Coupled equation of motion

\[
\begin{align*}
 x''(s) - 2\sqrt{\kappa_z(s)}y'(s) - \frac{K}{2} F_{sx}(x, y) &= 0, \\
 y''(s) + 2\sqrt{\kappa_z(s)}x'(s) - \frac{K}{2} F_{sy}(x, y) &= 0
\end{align*}
\]

where

\[
F_{sx}(x, y) = 2 \frac{1 - e^{-r^2/\sigma^2}}{r^2} x
\]

\[
F_{sy}(x, y) = 2 \frac{1 - e^{-r^2/\sigma^2}}{r^2} y
\]

Many test particles with different initial conditions

(Phase plane \(x/r_b - x', y/r_b - y', x/r_b - y/r_b\))

All points are plotted in every 5 lattice period (Poincare surface of section plots) with different particle initial conditions for propagation over 300 lattice periods

- \(K = 2.3, \sigma_0 = 115^\circ, \sigma = 90^\circ\)
 \[
 \frac{\sigma}{\sigma_0} = 0.78
 \]

- \(K = 3, \sigma_0 = 45.5^\circ, \sigma = 12^\circ\)
 \[
 \frac{\sigma}{\sigma_0} = 0.26
 \]
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions
(real frame)

All points are plotted in every 5 lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions

(real frame)

Single test particle motion

(phase plane $x/\tau_b - y/\tau_b$)

$K=2.3, \sigma_0 = 115^\circ, \sigma = 90^\circ$

$\frac{\sigma}{\sigma_0} = 0.78$

All points are plotted in every 5 lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods.
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions
(real frame)

All points are plotted in every 5 lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods

Single test particle motion
(phase plane $x/r_b - y/r_b$)

$K=2.3$, $\sigma_0 = 115^\circ$, $\sigma = 90^\circ$

$\frac{\sigma}{\sigma_0} = 0.78$
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions
(real frame)

Initial condition
\[
\left(\frac{x}{r_b} \right)^2 + \left(\frac{y}{r_b} \right)^2 = (0.1)^2
\]
\[
\left(\frac{x}{r_b} \right)^2 + \left(\frac{y}{r_b} \right)^2 = (0.7)^2
\]

Single test particle motion
(phase plane \(x/r_b \) - \(y/r_b \))

\(K=2.3 \), \(\sigma_0 = 115^\circ \), \(\sigma = 90^\circ \)

\(\frac{\sigma}{\sigma_0} = 0.78 \)

All points are plotted in every 5 lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods.
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions
(real frame)

All points are plotted in every S lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods

Transverse particle motions

(initial condition \(\left(\frac{x}{r_b} \right)^2 + \left(\frac{y}{r_b} \right)^2 = (0.1)^2 \))

\(\left(\frac{x}{r_b} \right)^2 + \left(\frac{y}{r_b} \right)^2 = (0.7)^2 \)

\(\left(\frac{x}{r_b} \right)^2 + \left(\frac{y}{r_b} \right)^2 = (0.9)^2 \)

Single test particle motion

(Phase plane \(x/r_b - y/r_b \))

\(K = 2.3, \quad \sigma_0 = 115^\circ, \quad \sigma = 90^\circ \)

\(\frac{\sigma}{\sigma_0} = 0.78 \)
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions
(real frame)

All points are plotted *in every S lattice period* (Poincare surface of section plots) of a single particle for propagation *over 300 lattice periods*

Initial condition

\[
\left(\frac{x}{r_b} \right)^2 + \left(\frac{y}{r_b} \right)^2 = (0.1)^2
\]

\[
\left(\frac{x}{r_b} \right)^2 + \left(\frac{y}{r_b} \right)^2 = (0.7)^2
\]

\[
\left(\frac{x}{r_b} \right)^2 + \left(\frac{y}{r_b} \right)^2 = (0.9)^2
\]

Single test particle motion
(phase plane \(x/r_b - y/r_b \))

\[\frac{x}{r_b}, \frac{y}{r_b} = (0.1)^2\]

\[\frac{x}{r_b}, \frac{y}{r_b} = (0.7)^2\]

\[\frac{x}{r_b}, \frac{y}{r_b} = (0.9)^2\]

\[\frac{x}{r_b}, \frac{y}{r_b} = (1.2)^2\]

\[K = 2.3, \sigma_0 = 115^\circ, \sigma = 90^\circ\]

\[\sigma = 0.78\]
Halo formation of transverse particle-core model

Gaussian density charged particle motions of matched beam

Transverse particle motions
(real frame)

Single test particle motion
(phase plane $x/r_b - y/r_b$

$K = 2.3$, $\sigma_0 = 115^\circ$, $\sigma = 90^\circ$

$\frac{\sigma}{\sigma_0} = 0.78$

All points are plotted in every S lattice period (Poincare surface of section plots) of a single particle for propagation over 300 lattice periods
Contents

- High-intensity charged-particle beam in a periodic solenoidal focusing field
 - Beam physics applications
 - Nonlinear resonances and chaotic motions of envelope oscillation
- Halo formation of transverse particle-core model
 - Halo formations
 - Uniform density charged particle motions
 - Gaussian density charged particle motions of matched beam
- Summary
Summary

• The periodic solenoidal focusing field is important for several reasons.
The periodic solenoidal focusing field is important for several reasons.

- Halo formations
Summary

• The periodic solenoidal focusing field is important for several reasons.

• Halo formations
 ✓ Uniform charge density
Summary

- The periodic solenoidal focusing field is important for several reasons.
- Halo formations
 - Uniform charge density

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Mis-matched</th>
<th>Beam core oscillates because of initial mismatch & Space charge effect</th>
<th>Envelope oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n-th order resonance</td>
<td></td>
<td>Particle frequency</td>
</tr>
</tbody>
</table>
Summary

- The periodic solenoidal focusing field is important for several reasons.
- Halo formations

 ✓ Uniform charge density

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Mis-matched</th>
<th>Beam core oscillates because of initial mismatch & Space charge effect</th>
<th>Envelope oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n-th order resonance</td>
<td></td>
<td>Resonance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Particle frequency</td>
</tr>
</tbody>
</table>
Summary

• The periodic solenoidal focusing field is important for several reasons.

• Halo formations

 ✓ Uniform charge density

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Mis-matched</th>
<th>Beam core oscillates because of initial mismatch & Space charge effect</th>
<th>Envelope oscillation</th>
<th>Resonance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n-th order resonance</td>
<td></td>
<td></td>
<td>Particle frequency</td>
</tr>
</tbody>
</table>

✓ Non-uniform charge density (Gaussian)
• The periodic solenoidal focusing field is important for several reasons.

• Halo formations

✓ Uniform charge density

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Mis-matched</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n-th order resonance</td>
</tr>
<tr>
<td></td>
<td>Beam core oscillates because of initial mismatch & Space charge effect</td>
</tr>
</tbody>
</table>

Envelope oscillation

Resonance

Particle frequency

✓ Non-uniform charge density (Gaussian)

| Envelope | Matched | Gaussian density profile | Non-linear space charge force |
Summary

• The periodic solenoidal focusing field is important for several reasons.

• Halo formations

 ✓ Uniform charge density

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Mis-matched</th>
<th>Beam core oscillates because of initial mismatch & Space charge effect</th>
<th>Envelope oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n-th order resonance</td>
<td>Resonance</td>
<td>Particle frequency</td>
</tr>
</tbody>
</table>

 ✓ Non-uniform charge density (**Gaussian**)

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Matched</th>
<th>Gaussian density profile</th>
<th>Non-linear space charge force</th>
</tr>
</thead>
</table>

- Symmetric gaussian -> radial motion
- Non symmetric gaussian -> coupled motions of x, y -> many test particles / single particle motions
Future plan

Reference

Future plan

- Transverse particle beam dynamics
 - particle-core model compare with PIC simulation of self-consistence

- Longitudinal beam dynamics

- Apply to the beam halo and beam loss measurement design input

Reference

Thank you for your attention!

61th ICFA Advanced Beam Dynamics Workshop
on High-intensity and High-brightness Hadron beams (HB 2018)
In Daejeon

Yoolim Cheon and Moses Chung,
Intense Beam and Accelerator Laboratory (IBAL),
Ulsan National Institute of Science and Technology (UNIST)