A POSSIBLE SYNCHROTRON LIGHT BEAM PROFILE MONITOR IN RHIC

D. Trbojevic, E. Courant, and S. Peggs, Brookhaven National Laboratory, Upton, NY 11973, USA, and A. Hahn, Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA

Abstract

This report examines the possibility of observing transverse beam profiles by using synchrotron light emission from the 100 GeV/nucleon heavy-ion gold beam in the Relativistic Heavy Ion Collider (RHIC). Synchrotron radiation experiences a shift towards higher photon energy when the magnetic field at the end of a dipole varies rapidly over a short distance. Synchrotron light signals from high energy (larger than 400 GeV) proton beams have already been routinely used to observe the transverse beam profiles at the SPS in CERN and at the TEVATRON at Fermilab. Because of the modest relativistic factor of the fully stripped stored gold ions in RHIC this “push” towards higher critical energy is not large enough to place the synchrotron light within the visible region under the influence of the dipole edge field effect. Recently the edge effect has been used to monitor the transverse beam profiles at the SPS and RHIC in Table 1.

Table 1: Critical Synchrotron Frequencies

<table>
<thead>
<tr>
<th>Collider</th>
<th>γ</th>
<th>Radius(m)</th>
<th>$\lambda_c (\mu m)$</th>
<th>B(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN-SPS</td>
<td>426.3</td>
<td>740.0</td>
<td>5.74</td>
<td>1.50</td>
</tr>
<tr>
<td>Fermilab-TEV</td>
<td>959.2</td>
<td>754.0</td>
<td>2.91</td>
<td>3.98</td>
</tr>
<tr>
<td>BNL-RHIC</td>
<td>108.4</td>
<td>242.2</td>
<td>95.2</td>
<td>3.46</td>
</tr>
</tbody>
</table>

The modification of the critical wavelength due to the edge effect is easily understood by following Coisson [5],[4],[6]. The critical is similarly modified by wigglers. Additional oscillations of the charged particles within a wiggler are similar to a new sequence of smaller bending magnets. The wiggler magnetic field oscillates within the wiggler length L_w, as $B = B_0 \sin(2\pi \lambda_c / L_w) / s$, where the period λ_c, produces enhanced synchrotron light with an output wavelength [5]:

$$\lambda = \frac{\lambda_c}{2\gamma^2} (1 + \gamma^2 \theta^2),$$

where the θ is the angle of observation and γ is the relativistic factor. The flux per unit solid angle around $\theta = 0$ expressed as the number of photons per second [5]:

$$\frac{dN}{d\Omega} = \frac{1}{8\pi^2 c_s h m^2 c^3} \frac{(Ze)^3}{\gamma^{7/2}} I L_w \lambda_c,$$

where I is the current in the storage ring. An analogous wiggler in the SPS or RHIC could be defined as previously [5] with parameters $L_w = 10m$, $\lambda_c = 10cm$, $B_0 = 0.03T$. The output wavelength λ and corresponding number of photons, when the parameter $B_2 \lambda_c L_w$ is kept the same for both the SPS and RHIC, is presented in Table 2:

These results encourage the use of a synchrotron light detector in RHIC. Unfortunately the wavelength is not in the visible but in the infrared region of the spectrum.
Table 2: Photon flux from the equivalent wiggler

<table>
<thead>
<tr>
<th>Collider</th>
<th>γ</th>
<th>λ(μm)</th>
<th>photons/sr/μm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN-SPS</td>
<td>426.3</td>
<td>0.55</td>
<td>5.7×10⁸</td>
</tr>
<tr>
<td>BNL-RHIC</td>
<td>108.4</td>
<td>4.25</td>
<td>1.0×10⁶</td>
</tr>
</tbody>
</table>

2 SYNCHROTRON RADIATION FROM THE EDGE FIELD

An ultra relativistic charged particle, with a charge Ze, emits synchrotron radiation over its trajectory of a length \(L_0 = mc/ZeB \). If a rapid variation of the magnetic field B, from zero to \(B_s \), or vice versa occurs within a short length \(L \), such that the deflection \(α \) of the particle \(α \ll 1/γ \) or equivalently [6] if the length \(L \ll L_0 \), then the spectrum changes. The critical frequency has a larger value than in the usual uniform magnetic field case. The fall or rise time \(τ_d \) at the observer who is looking at the edge [7], where the radius of the curvature \(ρ \sim L/θ = Lγ \) is:

\[
τ_d = \frac{L}{2cγ^2}.
\] (4)

Table 3 compares the previously calculated wavelength from a uniform magnetic field \(λ_u = cτ_d \) with the new value \((λ_d = cτ_d) \) when the magnetic field changes within a length \(L \).

<table>
<thead>
<tr>
<th>Collider</th>
<th>Eff. Length</th>
<th>(λ_d(μm))</th>
<th>(γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN-SPS</td>
<td>0.100 m</td>
<td>0.275</td>
<td>426.3</td>
</tr>
<tr>
<td>Fermilab-TEV</td>
<td>0.148 m</td>
<td>0.080</td>
<td>959.2</td>
</tr>
<tr>
<td>BNL-RHIC</td>
<td>0.100 m</td>
<td>4.255</td>
<td>108.4</td>
</tr>
</tbody>
</table>

2.1 Error Function Approximation of the Dipole End Field

Following previous work on the spectral distribution of synchrotron radiation from a “short” magnet [6], and with the end of the magnet approximated by an error function \(B(s) = 1/2B_s(1 + erf(s/L)) \), the spectral distribution of the power density collected over the whole \(4π \) solid angle is:

\[
\frac{dW}{dv} = \frac{C^2B_x^2γ^4}{4πν^2} S(x) \langle f^2 \rangle (w^2),
\] (5)

\[
S(x) = \int_1^∞ \langle f^2 \rangle e^{-x^2γ^2} dy,
\] (6)

where \(\langle f^2 \rangle = y^{-α}(y^2 - 2y + 2), y = 1 + γ^2θ^2, x = \sqrt{2}ν/ν_1, ν_1 = 2γ^2c/πL, erf(x) = 1 - erf(x) \) where \(erf(x) \) is a standard error function [8], and the constant \(C^2 = (Ze)^4/(πe^2(1/e, c)) \). Values of the constants for the three large hadron colliders are presented in Table 4.

When the magnetic field is presented by the error function the function \(S(x) \) is:

\[
S(x) = \frac{e^{-x^2}}{15} \left(\frac{7}{2} - \frac{13}{2} x^2 + 8x^4 \right) + \frac{2}{3} \sqrt{x}x^3(1 - \frac{4}{5}x^2)erf(x) - \frac{1}{2}x^4E_1(x^2),
\]

where \(E_1(x^2) \) is the exponential integral defined in [8].

Table 4: Error Function Approximation Constants

<table>
<thead>
<tr>
<th>Collider</th>
<th>(C^2) (MKS)</th>
<th>(λ_1(μm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN-SPS</td>
<td>8.9910⁻²¹</td>
<td>0.389</td>
</tr>
<tr>
<td>Fermilab-TEV</td>
<td>8.9910⁻²¹</td>
<td>0.078</td>
</tr>
<tr>
<td>BNL-RHIC</td>
<td>9.1510⁻¹⁸</td>
<td>6.015</td>
</tr>
</tbody>
</table>

The magnetic end field in the RHIC dipoles was measured by a combination of the Hall and nuclear magnetic resonance (NMR) probes. One of the measured results of the end field is presented in Fig. 1. The photon spec-

![Z-Position (inch)](image)

Figure 1: The RHIC dipole magnetic field end measurement result.

tra of the synchrotron radiation in the three hadron colliders are presented in fig 2. At the wavelength of 4.5 μm a detector made of PbSe has a maximum in detectivity \(D^*(=e/cmHz^{1/2}W^{-1}) \). The number of photons per turn for RHIC at \(λ = 4.5 μm \) is equal to \(N_{photons} = 5433 \) at the bandwidth-wavelength interval equal to \(Δλ = 0.5μm \).

3 INFRARED DETECTOR ARRAYS

The short range \(L \) of the fast change of the magnetic field at the end of the dipole together with the value of relativistic factor \(γ \) determines the critical wavelength of the synchrotron radiation spectrum. Synchrotron light emitted from the \(γ = 108.4 \) heavy ion beams has a critical wavelength 4.5 μm, corresponding to a photon energy
of $E = 0.275\,\text{eV}$. The difference in the photon energy from the visible light 1.6-3.1 eV changes the material needed for a photovoltaic p-n junction detector. Instead of using semiconductors like silicon with the energy gap of $E_g=1.09\,\text{eV}$, infrared detectors are usually semimetals with an energy gap of approximately 0.3 eV. Commercially available detectors include Lead-Salts PbSe (TEXTRON), 2-5μm, Indium-Antimonide InSb 1-5.35μm (Lockheed-Martin Corp.), and Pt-Silicon-Silicide 3-5μm (NIKON Corp.). Other materials used for the near infrared photon detection are PbTe, PBS [9], InGaAsP CdTe, HgTe-CdTe, PbTe-HgTe, Pb$_{0.97}$Hg$_{0.03}$Te [10], et cetera.

3.1 A Possible Detector Setup at RHIC

Synchrotron light is emitted in a cone of $1/\gamma$. The RHIC DX dipole considered for the synchrotron light application has a length of 3.7 m and a magnetic field of 4.279 T at the top energy when fully stripped gold ions collide. An infrared reflector mirror can be introduced at a distance of 4.85 m from the front edge of the magnetic field. The spot size at the reflector will then have a radius of 2.2 cm. An infrared transparent vacuum window above the reflector and an additional lens above it are required to match the reflected photons to the infrared detector array surface.

4 CONCLUSIONS

Synchrotron radiation from heavy ions like fully stripped gold can be successfully used in a beam profile monitor application in RHIC. Due to the relatively small value of the relativistic factor $\gamma = 108.4$, the emitted synchrotron radiation from the fast changing field at the end of the magnet is within the infrared region. Due to the large charge state (in gold +79), the number of photons obtained should be large enough to be recorded by a standard infrared detector array within a wavelength range of 1-6 μm. Operational experience with synchrotron light monitoring at the Fermilab Tevatron for both proton and antiproton stored beams has shown high reliability and accuracy of 5% in providing the transverse rms beam sizes. Synchrotron light monitors could be easily installed in the RHIC rings to provide continuous information about the beam profiles and the transverse emittances of the two colliding ion beams.

5 REFERENCES

