High Field-Gradient Cavity for J-PARC 3 GeV RCS

C. Ohmori and JKJ Ring RF Group
KEK and JAERI

July 7, 2004

EPAC2004, Lucerne
J-PARC (Japan Proton Accelerator Research Complex)

- JAERI and KEK Joint Project
- 400 MeV Linac (181 MeV in Phase I)
- 3 GeV RCS 1 MW for neutron and μ users
- 50 GeV MR 0.75 MW for ν, nuclear and particle physics

July 7, 2004 EPAC2004, Lucerne
Cavity Parameters (Phase I)

<table>
<thead>
<tr>
<th></th>
<th>3 GeV RCS</th>
<th>50 GeV MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td>Dual Harmonic</td>
<td>Single</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>0.94-1.67 MHz</td>
<td>1.67-1.72 MHz</td>
</tr>
<tr>
<td></td>
<td>1.88-3.34 MHz</td>
<td>(or 3.34-3.44 MHz)</td>
</tr>
<tr>
<td>Harmonics</td>
<td>2</td>
<td>9 (or 18)</td>
</tr>
<tr>
<td>RF Voltage(Max.)</td>
<td>450 kV</td>
<td>280 kV</td>
</tr>
<tr>
<td>Number of Cavity</td>
<td>11+(1)</td>
<td>6+(1)</td>
</tr>
<tr>
<td>Cavity Length</td>
<td>About 1.8-2.0 m</td>
<td>1.776 m</td>
</tr>
<tr>
<td>Optimum Q</td>
<td>2-</td>
<td>10 (20)</td>
</tr>
<tr>
<td>Core</td>
<td>MA, cut core, gap 0.5mm</td>
<td>MA, cut core, gap 10 mm</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>6.6 kW/core</td>
<td>13.2 kW/core</td>
</tr>
</tbody>
</table>

July 7, 2004

EPAC2004, Lucerne
Why High Field Acceleration

3 GeV RCS
Fast cycling: 25 Hz
 Needs high voltage: 450 kV
of bunches: 2 (by neutron-users)
Rise time of Extraction Kicker
 Low Frequency: 0.94-1.7 MHz
Circumference is limited.
Needs spaces for extraction, injection and collimation.

High Field Gradient using MA core

July 7, 2004
EPAC2004, Lucerne
Characteristics of Magnetic Cores

- Ferrites
- Magnetic Alloys

High Loss Effect

2000 Gauss

200V/div, 5ms/div

July 7, 2004
EPAC2004, Lucerne
Characteristics of MA core

- Core is made of thin Magnetic Alloy ribbon tape.
- Very large permeability- μQf-product is large.
- μQf-product remains constant at very large magnetic flux density. Saturation flux density is 15 kG.
 - High Field Gradient becomes available!
- Intrinsic Q-value is 0.6 (FINEMET).
 - Frequency sweep without tuning system is possible
 - Dual (Multi-) Harmonics system
- Q-value is variable by Cut Core Configuration.
Cut Core Configuration

July 7, 2004

EPAC2004, Lucerne
Optimum Q-value (Beam Loading)

Optimum Q-value is 2.
Bandwidth for dual harmonic acceleration
Less beam loading effects with $H=2,4,6$ compensation

Although multi-H compensation ($H=1,\ldots,6$) is applied, beam loss is expected, in case of $Q=0.6$ (left). No beam loss in case of $Q=2$ (right) TUPLT072 M. Yamamoto

July 7, 2004

EPAC2004, Lucerne
Optimum Q-value
Bandwidth of RCS RF System

- 2 X 600 kW tetrode tubes have 1 nF grid capacitance.
 - Bandwidth of input circuit is 5 MHz

All pass network
Optimum Q-value (Dual Harmonic Operation)

- Q=2 can cover the 2nd harmonic frequency around the injection.
- Dual Harmonic RF will help to reduce S.C. effects.

An Example of dual harmonic rf using a MA cavity in HIMAC(May ‘04).

Adding the 2nd Harmonics, acceleration efficiency was improved by 30 %. Another 10 % was improved by the 3rd Harmonics.

C. Ohmori, A. Takagi(KEK), M. Kanazawa, K. Noda, A. Sugiura(NIRS)

July 7, 2004

EPAC2004, Lucerne
Both direct and indirect water cooling schemes were tested. Direct cooling is used for J-PARC for high cooling efficiency. High Power test has been performed
Power Loss in Cut Core

In case of a large cut core, only a limited choice of cutting method (water jet).

Localized temperature rise has been observed.

The temperature was measured using a “Infra-red Camera”

July 7, 2004 EPAC2004, Lucerne
Temperature Rise at Cut Surface

By improving the water flow going through the cut core gap, cooling efficiency was improved.

Thermo-paint was used to measure the temperature during the test.

Only limited spots which were covered by gap spacer are still hot.

Core surface after 8-hours high power test with 0.4 W/cc (1.2 X J-PARC spec). No significant damage was observed on the core.
Power Loss in Cut Core

Temperature distribution on other cut core.

In case of cut core with a good cut surface, no localized temperature rise has not been observed.

July 7, 2004

EPAC2004, Lucerne
Temperature Rise at Cut Surface

Core surface after 8-hours high power test with 0.4 W/cc (1.2 X J-PARC spec)
Core surface after 0.5-hours high power test with 0.8 W/cc (2 X J-PARC spec)

July 7, 2004
EPAC2004, Lucerne
Cut Core Surfaces

Water Jet Cut

Grindstone + Etching

Measurements using Laser depth-meter

[Images of oscilloscope readings showing measurements of 0.6mm and 1mm]
Cut Core Surfaces

Finmet layer with 18 µm thickness is shown in both pictures. The surface by water jet cut is not flat.

Localized temperature rise is related to the condition of cut core surface. -> A smooth cutting scheme is under development.

July 7, 2004

EPAC2004, Lucerne
Status of 3 GeV RCS RF

- Core: Production (40 cores for 2 cavity)
- Cavity: Designing
- APS: Production & Testing
- AMP: Production & Testing
- D-AMP: Designing*
- Low Level: Designing

* Based on CERN-KEK collaboration.

July 7, 2004

EPAC2004, Lucerne
Summary

- A wideband RF system using MA cavities is used for J-PARC RCS.
- The optimum Q-value for acceleration and for whole RF system is 2 to cover the 2nd harmonics.
- Cut core configuration is used to increase the Q-value. However, localized loss was observed if the surface is rough. A smooth cutting scheme is under development.
- By improving the water flow in the water tank, temperature rise is acceptable for acceleration and no damage was observed.
- MA cores, Anode PS, Amplifiers are in production. Cavities and others will start manufacturing.