Q₀ DEGRADATION OF LANL 700-MHZ $\beta=0.64$ ELLIPTICAL CAVITIES AND ANL 340 MHZ SPOKE CAVITIES*

Abstract
The quality factor (Q₀) of most of the six LANL $\beta=0.64$ 700-MHz 5-cell elliptical cavities starts to drop at $E_{acc} = 8 – 10$ MV/m, which may be related to multipacting. Residual resistances of these cavities were measured to be $5.0 – 7.6$ nΩ. The sensitivity of surface resistance to the external magnetic field was measured to be 0.22 nΩ/mG. Q disease tests have shown no significant Q₀ degradation for both elliptical cavities and a spoke cavity with our 100 μm BCP.

1 INTRODUCTION
Obtaining and maintaining high Q₀ is important for superconducting (SC) RF cavities to reduce heat load to a cryogenic system, which will lead to a significant reduction of operation cost, e.g., from 3.5 M to 2.0 M/year at 2 K for accelerator production of tritium (APT) [1].

Six 700-MHz, $\beta=0.64$, 5-cell elliptical cavities were fabricated as prototypes for APT. Among them, five were made by industry and one was made at LANL. Most of them showed Q₀ drop at high fields together with X-ray emission.

In the region where electrons are not involved, Q₀ is determined by the surface resistance R_s, i.e., $Q_0 = G/R_s$, where G is the geometrical factor, a constant dependent on the cavity shape only.

2 Q₀ DROP AT HIGH FIELDS
Among the 6 cavities, 4 cavities showed steep Q₀ drop starting at an accelerating field of $E_{acc} = 8 – 10$ MV/m ($E_{peak} = 27 – 34$ MV/m, $H_{peak} = 557 – 696$ Oe). Figure 1 shows a typical Q – E curve. All the Q₀ drops were associated with X-ray emission, suggesting electron activity.

An asymmetric single-cell cavity (that consists of a half cell of the middle cell of an APT cavity and half of an end cell) was tested at Saclay and showed a similar result [6]. A multipacting (MP) calculation by Devanz showed a MP resonance zone at $E_{acc} = 4 – 8$ MV/m, although it could not reproduce the Q₀ drop at higher fields [6].

A comparative experimental study at Saclay with different cell shapes has shown that a cell shape with larger radius can achieve very high fields ($E_{acc} = 26$ MV/m) without MP. The MP calculation also did not indicate any MP bands for the cavities that were free of multipacting [6].

3 SURFACE RESISTANCE R_s
R_s is expressed with two terms as,

$$R_s = R_{BCS} + R_{res},$$

where R_{BCS} is the BCS surface resistance that depends on the cavity frequency f and the surface temperature T as follows.

$$R_{BCS} = A \cdot \left(\frac{f}{T} \right)^2 \cdot \exp \left(-\frac{\Delta}{k_B T_c} \cdot \frac{T}{T_c} \right),$$

where A is a constant, dependent on the material parameters of the superconductor, such as λ_L, ξ_0, mean free path (l), 2Δ the energy gap and k_B the Boltzman constant [2].

R_{res} consists of two terms as follows.

$$R_{res} = R_{res} (H_{rf}) + R_{fl} (H_{rf}, H_{ext}, T),$$

where H_{rf}, H_0 and H_{ext} are the RF magnetic field in the cavity, the residual resistance caused by trapped magnetic flux and the external magnetic field, respectively [7].

3.1 Experimental data on R_s
The constant A in Eq. (2), energy gap $2\Delta/k_B T_c$ and R_{res} can be obtained by fitting a $R_s (=G/Q_0)$ versus 1/T curve with Eqs. (1) through (3).

Figure 2 shows an example that was obtained from an APT elliptical cavity named Sylvia.

*Work supported by the US Department of Energy under contract W7405-ENG-36.
†tajima@lanl.gov
Figure 2: R_s vs. $1/T$ curve of the Sylvia cavity. Shown at the top are the fitting results to get constants and R_{res}. Table 1 summarizes the parameters in the R_{BCS} and R_{res} of all the elliptical cavities and spoke cavities we have tested at LANL. The other data such as Q-E curves have been presented elsewhere [3, 4]. Also, some elliptical cavities have been tested at TJNAF at 2 K only and the temperature dependence data for those cavities are not available.

Table 1: Parameters of R_{BCS} and R_{res} of 700-MHz $\beta=0.64$ 5-cell elliptical cavities and ANL 340-MHz $\beta=0.29$ and 0.4 2-gap spoke cavities. The ANL $\beta=0.4$ cavity were tested twice, designated as (1) and (2).

$R_s = a*1/T^4 \exp(-b*1/T)+R_{\text{res}}$

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.9804e-05</td>
<td>4.4326e-06</td>
</tr>
<tr>
<td>b</td>
<td>18.734</td>
<td>0.35986</td>
</tr>
<tr>
<td>R_{res}</td>
<td>6.4452e-09</td>
<td>1.9664e-10</td>
</tr>
<tr>
<td>Chisq</td>
<td>1.5188e-17</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>0.99857</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 1: Parameters of R_{BCS} and R_{res} of 700-MHz $\beta=0.64$ 5-cell elliptical cavities and ANL 340-MHz $\beta=0.29$ and 0.4 2-gap spoke cavities. The ANL $\beta=0.4$ cavity were tested twice, designated as (1) and (2).
4.2 340 MHz Spoke cavities

Two dedicated Q_0-disease tests were performed with a 340-MHz $\beta=0.4$ 2-gap spoke cavity on loan from ANL. This cavity was chemically polished 98 μm with HF:HNO$_3$:H$_3$PO$_4=1:1:2$ by volume at 14 – 18 $^\circ$C. Figure 4 shows the cavity set on the insert. Figure 5 shows the time evolution of the temperature during the warm up to an intermediate temperature. Since around 100 K is reported to be the most dangerous temperature [9], we intended to hold the cavity at 100 K. As one can see in Fig. 5, however, the temperature increased up to 142 K after 86 hours due to lack of a temperature control mechanism, although the temperature was successfully kept at 100 – 102 K for 13 hours in the first test.

![Figure 4: ANL $\beta=0.4$ spoke cavity used for Q_0 degradation test.](image)

![Figure 5: Temperature evolution when the cavity was held at an intermediate temperature. Holding times for the first and second tests were 13 hours at 100 – 102 K and 86 hours at 100 – 142 K, respectively.](image)

The results at 4 K showed no degradation after up to 86 hours of holding the cavity at 100 – 142 K. The first data before warm up (solid triangle) showed lower Q_0 due to contamination from leaks, which was removed by RF processing as the power went up.

![Figure 6: $Q - E$ curves before and after the warm up to an intermediate temperature. No degradation was observed.](image)

5 ACKNOWLEDGEMENTS

We would like to thank Mike Kelly of ANL for helping us in handling one of the ANL spoke cavities, and Ken Shepard for giving us the opportunities to test their spoke cavities. We are indebted to H. Haagenstad and the personnel at the ETL workshop for modification of test parts, to Mike Madrid for helping us with cryogenic handling, to Brian Haynes for helping us check test programs and to Andy Jason for carefully reading the manuscript.

6 REFERENCES