Beam Diagnostic System of XFEL/SPring-8

RIKEN/SPring-8,
H. Ego, K. Yanagida and H. Tomizawa,
JASRI/SPring-8
DIPAC 2009
25th, May 2009
Outline

• Introduction
 – X-ray FEL Project at SPring-8
 – SCSS Test Accelerator
 – XFEL Machine Layout and Parameters

• Beam Diagnostic System
 – Requirements and Solutions
 – RF Cavity BPM
 – Transverse Beam Profile Monitor
 – Current Transformer
 – Temporal Bunch Structure Measurement

• Summary
Introduction
X-ray FEL Project at SPring-8

- X-ray wavelength: < 0.1 nm
- Self-amplified spontaneous emission (SASE) process
- Beam energy: 8 GeV
- Key technologies
 - Low-emittance thermionic electron gun: 0.6 π mm mrad
 - High-gradient C-band accelerator: 35 MV/m
 - Short-period in-vacuum undulator: $\lambda_u = 18$ mm, $K < 2.2$
- First FEL light will be delivered in 2011.
SCSS Test Accelerator

• Extreme ultraviolet (EUV) FEL facility
 – Wavelength: 50 – 60 nm for saturated output
 – Beam energy: 250 MeV

• Saturated EUV laser light has been stably generated since 2006.
XFEL Building

• Construction was completed in March 2009.
• **8GeV linear accelerator**
 – 238 MHz, 476 MHz, L-band (1428 MHz), S-band (2856 MHz) and C-band (5712 MHz)

• **Bunch compression**
 – Velocity bunching in the low energy region
 – Three bunch compressors
 – Bunch length: \(1 \text{ ns} \rightarrow 30 \text{ fs} \) (FWHM)
 – Peak current: \(1 \text{ A} \rightarrow 3 \text{ kA}\)

• Coherent X-rays are generated by in-vacuum undulators
XFEL Machine Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy</td>
<td>8 GeV</td>
</tr>
<tr>
<td>Bunch Charge</td>
<td>0.3 nC</td>
</tr>
<tr>
<td>Normalized Slice Emittance</td>
<td>0.7π mm mrad</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>60 pps maximum</td>
</tr>
<tr>
<td>Peak Current</td>
<td>3 kA</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>30 fs (FWHM)</td>
</tr>
<tr>
<td>Beam Radius</td>
<td>40 µm (RMS)</td>
</tr>
<tr>
<td>Undulator Period</td>
<td>18 mm</td>
</tr>
<tr>
<td>Undulator K-value</td>
<td>2.2 maximum</td>
</tr>
<tr>
<td>Undulator Gap</td>
<td>3 mm minimum</td>
</tr>
<tr>
<td>Number of Periods</td>
<td>$275 \times 18 = 4950$</td>
</tr>
</tbody>
</table>
Requirements and Solutions for the Beam Diagnostic System

- **High-resolution beam position monitor (BPM)**
 - To maintain the overlap between an electron beam and X-rays in the undulator section with 4 \(\mu \text{m} \) precision
 - Position resolution < 0.5 \(\mu \text{m} \)
 -> RF cavity BPM

- **High-resolution transverse beam profile monitor**
 - Beam radius: 40 \(\mu \text{m} \) (RMS)
 - For emittance and Twiss parameter measurement etc.
 - Spatial resolution < 10 \(\mu \text{m} \)
 -> OTR monitor and fluorescent screen monitor with a custom imaging system

- **Noise-free high-speed current transformer (CT)**
 - Need to reduce noise coming from the power supply of a klystron.
 - Rise time < 1 ns
 -> Differential CT

- **Temporal bunch structure measurement system**
 - Bunch Length: 30 fs (FWHM)
 - Temporal resolution < 10 fs
 -> C-band transverse RF deflecting cavity
RF Cavity BPM
RF Cavity BPM

- Details will be reported by MOPD07 in the today’s poster session.
- Resonant Frequency: 4760 MHz
- Required position resolution: < 0.5 μm
RF-BPM Resolution

- Position resolution: \(0.2 \, \mu\text{m}\)
 - Measured with three adjacent BPMs.
 - Compare the 2\(^{nd}\) BPM data with the interpolation from 1\(^{st}\) and 3\(^{rd}\) BPMs.
Beam Profile Monitor
Precise Beam Profile Monitor

• Requirements
 – Spatial resolution: < 10 µm
 • Beam radius is 40 µm (RMS) in the undulator section.
 → Custom imaging system

• Screen type
 – Fluorescent screen for low energy part (< 100 MeV)
 • Ce: YAG etc.
 – Optical transition radiation (OTR) for high energy part
 • Stainless steel foil

Imaging System

- Custom-made lens system
- Variable magnification: $x1 - x4$
 - Lens and CCD camera are mounted on a motorized stage
 - $x1$ optics: Beam finding
 - $x4$ optics: Precise measurement
Spatial Resolution

- Spatial resolution of the imaging system was measured by using a grid distortion pattern.
- **Spatial resolution**: $2.5 \mu m$ (HWHM)
 - x4 optics
 - Consistent with lens simulation

![Grid distortion pattern](image)
OTR Target

- Thin stainless steel foil
 - Thickness: 0.1 mm
 - To reduce radiation damage of other components.
- 1mm-thick frame to support the foil
 - Ten 0.1 mm thick foils are stacked and unified by a diffusion bonding technique.
- Surface roughness: several 10 nm
- Flatness: 3 µm
Beam Images

- Taken at the SCSS test accelerator
 - Beam energy: 250 MeV
 - Horizontally focused by Q-magnet.
- Image width is consistent with the natural divergence due to beam emittance
- Deterioration of Ce:YAG image is small (< 10 µm).
Current Transformer
Differential Current Transformer

- 2 positive ports and 2 negative ports
- Common-mode noise can be subtracted
CT Results

• Rise time: 0.2 ns
• Pulse height is proportional to the beam charge
Common-mode Noise Reduction

- Common-mode noise was reduced to 1/10.

1mV/div, 10µs/div
Transverse RF Deflector
Temporal Structure Measurement

- Temporal beam structure is converted to spatial distribution by transverse RF voltage.
- Beam image is taken by an OTR monitor.
- Required temporal resolution: < 10 fs
 - 100 fs/mm on the screen (after 5–10m drift space)
 - Deflecting voltage: 40 MV at crest phase
- Installed downstream of 3rd Bunch compressor
C-band RAIDEN Cavity

- **Racetrack-shaped iris-coupling deflecting structure**
 - To separate x- and y-mode

- **Resonant Frequency: 5712 MHz**
 - To obtain higher kick voltage
 - To fully utilize the C-band accelerator resource

- **Backward traveling wave of HEM11-5π/6 mode**

- **Deflecting voltage: 40 MV**
 - When 1.7m x 2 cavities are driven by 50 MW klystron.
Low-level RF Measurements

- Measured with a 7-cell model.
- Pass band
 - Y-mode is clearly separated from x-mode.
- Shunt impedance
 - Bead perturbation measurement
 - Simulation: 13.9 MΩ/m
 - Measurement: 13.7 MΩ/m

Simulation vs. Measurement

- X-mode
- Y-mode

Frequency [MHz]

Simulation HEM11

X-mode

5712 MHz

Y-mode
Summary

• RF cavity BPM
 – Position resolution: 0.2 µm

• Beam Profile Monitor
 – Spatial resolution of the imaging system: 2.5 µm
 – Variable magnification: x1 – x4
 – Thin OTR target and Ce:YAG fluorescent screen

• Current transformer
 – Differential output
 – Rise time: 0.2 ns

• Transverse RF deflector
 – For Temporal Bunch Structure Measurement
 – C-band RAIDEN cavity (racetrack-shape iris)
 – Will be installed downstream of the third bunch compressor.

• Beam monitors are ready for XFEL
 – Design work has been almost completed.
 – Performance was confirmed to be sufficient by beam tests.
Supplements
Quantity of Beam Monitors

- RF cavity BPM (RF-BPM): 56
- Beam profile monitor (PRM): 43
- Current transformer (CT): 30
- Transverse RF deflector: 1
Detection Principle of RF-BPM

- TM110 dipole resonant mode of a pillbox cavity

\[E_z = E_0 J_1 \left(\frac{\chi_{11} r}{a} \right) \cos \phi e^{j\omega t} \]

- E-field is linear around the axis

- Output voltage

\[V = V_1 q x + jV_2 q x' + jV_3 q + V_n \]

- Need to discriminate in-phase component from quadrature.
BPM Electronics

- IQ demodulator
- Attenuator switch extends the dynamic range to 100 dB
 - From sub-µm to a few mm
- Baseband signals are recorded by a 12-bit VME waveform digitizer.
Position Sensitivity

• Measurement
 – Motorized stage of the BPM was moved
 – Beam was fixed

• Position sensitivity: **0.1 µm**
 – More than 20 ADC counts / µm
 – ADC noise < 2 counts (RMS)
Beam Arrival Timing Resolution

• Beam arrival timing can be measured by the phase of the reference cavity (TM010).
 – Useful to monitor the timing drift of the machine
 – Required temporal resolution: < 50 fs

• Arrival timing resolution: 25 fs
 – Measured by the reference cavities of two neighboring BPMs.
Screen Actuator

- **3-state pneumatic actuator**
 - 2 screens and a beam hole
 - For the beam energy of 30 – 300 MeV
 - Because of the poor OTR yield
Projection of Beam Image

OTR Ce:YAG Projection

$\sigma_x = 8.3 \text{ pixels} \\
= 13.4 \text{ \(\mu\text{m}@\text{OTR foil}$$

$\sigma_x = 9.8 \text{ pixels} \\
= 15.8 \text{ \(\mu\text{m}@\text{Ce:YAG}$$

Horizontal Pixel Number
Parameters of RAIDEN Cavity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Deflecting Voltage</td>
<td>V_y</td>
<td>40</td>
<td>MV</td>
</tr>
<tr>
<td>RF deflecting phase</td>
<td>φ_a</td>
<td>0</td>
<td>degree</td>
</tr>
<tr>
<td>Fractional bunch length for X-ray oscillation</td>
<td>σ_z</td>
<td>200</td>
<td>fs</td>
</tr>
<tr>
<td>Beam energy at the deflector</td>
<td>$p_z c$</td>
<td>1.45</td>
<td>GeV</td>
</tr>
<tr>
<td>Resonant frequency</td>
<td>f_a</td>
<td>5712</td>
<td>MHz</td>
</tr>
<tr>
<td>Type of structure</td>
<td></td>
<td>CZ</td>
<td></td>
</tr>
<tr>
<td>Resonant mode</td>
<td></td>
<td>HEM11</td>
<td></td>
</tr>
<tr>
<td>Phase shift per cell</td>
<td>βD</td>
<td>$5\pi/6$</td>
<td>rad</td>
</tr>
<tr>
<td>Group velocity</td>
<td>v_g/c</td>
<td>-2.16</td>
<td>%</td>
</tr>
<tr>
<td>Filling time</td>
<td>T_f</td>
<td>0.27</td>
<td>µs</td>
</tr>
<tr>
<td>Unloaded Q</td>
<td>Q_a</td>
<td>11500</td>
<td></td>
</tr>
<tr>
<td>Transverse shunt impedance</td>
<td>z_y</td>
<td>13.9</td>
<td>MΩ/m</td>
</tr>
</tbody>
</table>
Machining of the Cell

• Race-track iris
 – Made by a precise milling machine
 – Electrochemically polished
 – Surface roughness: $1 \, \mu\text{m} \, \text{pk-pk}$

• Other part
 – Machined by a precise lathe with a diamond bit
 – Roughness $< 1 \, \mu\text{m} \, \text{pk-pk}$