STATUS OF THE TEXAS A&M CYCLOTRON INSTITUTE

K150 conventional cyclotron (88”) injected by a 14.5+11 GHz ECR ion source and a H/D-minus ion source. Still lacking cryopanel operation.

K500 superconducting cyclotron injected by a 6.4 GHz ECR ion source, H2+ to U.
K150 ION SOURCES

ECR2

Close-up of oven

Leads and Ta crucible

Injection flange for Hi-temp oven, following LBL

Ti Charge-state spectrum
K500 ECR1 ION SOURCE

- Toward extraction
- Low-temp oven
- Hi-temp oven
- Passive liner (Li)
- Sputter fixture

Radial port
A single event upset (SEU) is a change of state caused by one single ionizing particle (ions, electrons, photons...) striking a sensitive node in a micro-electronic device.

Soft errors are non-destructive and normally appear as transient pulses in logic or support circuitry, or as bit flips in memory cells or registers.

Hard errors usually result in a high operating current, above device specifications, and must be cleared by a power reset. Burnout errors are so destructive that the device becomes operationally dead.

Aerospace computer equipment receives radiation from cosmic rays, solar flares and the Earth’s Van Allen radiation Belts - causing SEUs.

Engineers must test the resilience of their computer chips in accelerated beams here on Earth to simulate the effects that will happen in space.
The Two SEU Testing Stations

Heavy ions – K500 Cyclotron

Protons – K150 Cyclotron
SEE CAPABILITY

K500 Cyclotron
• 15 AMeV – α, N, Ne, Ar, Cu, Kr, Ag, Xe, Ho, Ta, Au
• 25 AMeV – α, N, Ne, Ar, Cu, Kr, Ag, Xe
• 40 AMeV- α, N, Ne, Ar, Cu, Kr-78
• Flux adjustable between 1E1-1E7 p/s-cm2
• Uniform beam spots – 1” and 1.5” diam. (reduced with collimators)
• In-air testing station – 10”X10” frame (x, y, z, θ roll angle)
• Climate controlled data room + staging area
• Cable length ~20 ft minimum

K150 Cyclotron
• Protons – 6, 10, 15, 20, 25, 30, 35, 40, 45, 49 MeV
• Degrader wheel for fast energy changes
• Flux adjustable between 1E1 – 1E10 p/s-cm2
• Uniform beam spots – 1” and 1.5” diam. (reduced with collimators)
• In-air testing station – 10”X10” frame (x, y, z, θ roll angle)
• Cable length ~60 ft minimum
TUNING THE K500 FOR SEE

• Charge-states for ions in each suite are chosen so that the Q/M’s are close so that only small changes in the magnetic field need to be made between the various beams while the cyclotron frequency is left fixed. (Q/M = ~0.20 for the 15 AMeV suite.)
• To save time between beam changes within each suite the injection line which uses only magnetic components is left fixed, and the extraction-voltage of ECRIS is varied.
• All the beams from solid materials in these suites are provided by sputtering into the ECRIS. To switch between solids requires just applying the sputtering voltage to the lead to that solid.
• Beam changes within each suite less than ½ hour. No “cocktails”.
STATUS OF THE ACCELERATED RADIOACTIVE BEAMS UPGRADE

Light-Ion Guide – Gabriel Tabacaru and Juha Ärje

Heavy-Ion Guide – Greg Chubaryan
LIGHT-ION GUIDE

RF-only Sextupole Guide following JYFL design

Above shielding charge-bred beam of Ga-64 12+ at 23 pps

Smaller flux of Rn-220 29+ (from thorium)

2X1E4 pps of Ga-64 with a 4µA proton beam

1+ alkali ion source + ES 90° deflector
TUNING THE K500 AND ITS BEAM-LINE FOR RIBS

14 AMeV Kr beam for detector calibration

14 AMeV O 3+ (.1876)

14 AMeV Rb 16+ (.1885) with shift in RF of 56 kHz

12 kHz to make the oxygen completely disappear from the detector. (RF = 12.24 MHz)
SUMMARY

• The Texas A&M Cyclotron Institute will continue to flourish with extra support from the SEE program.
• Intensities from the K150 and from the light-ion guide are improving, but need to be much better for the plans of the laboratory.
• We anticipate beginning to accelerate radioactive beams in the near future.

Possible scenario for RIB acceleration

Courtesy Dave Judd and Ronn MacKenzie
Updated Possible Scenario

High Bay

Mezzanine

Control Room

Basement
High Bay

Control Room

Mezzanine

Basement

Thanks