Progress of Front End Design and FOFO Snake

David Neuffer, Y. Alexahin FNAL
Outline

• Front end design
 – Baseline configuration
 – Buncher Phase Rotator
 – Cooler options

• HFOFO “Snake” properties
 – Design Concepts
 – Example (IBS)
 – Simulation

• Variations
 – cold muon source
• **From target to end of initial cooling**

 – capture and bunch $\pi \rightarrow \mu$; initial cooling for downstream

 – captures & cools both signs (μ^+ and μ^-)

• **Same system can be used for both ν factory and $\mu^+\mu^-$ collider**
IDS Neutrino Factory Buncher and φ-E Rotator

- **Drift** ($\pi \rightarrow \mu$)
- “Adiabatically” bunch beam first (weak 320 to 232 MHz rf)
- **Φ-E** rotate bunches – align bunches to ~equal energies
 - 232 to 202 MHz, 12MV/m
- **Cool beam 201.25MHz**
- Captures and Cools both μ^+ and μ^-
Buncher/Rotator Example

- **Drift** from target ~60m
 - $\pi \rightarrow \mu$
 - Beam lengthens
- **Buncher** (~30m)
 - $N=10$, $P_0=280$ MeV/c, $P_N=154$ MeV/c
 - $330 \rightarrow 235$ MHz
 - $V'=0 \rightarrow 10$ MV/m
- **Rotator** (~35m)
 - $N=10.08$ – accelerate/decelerate bunches
 - $235 \rightarrow 202$ MHz, $V'=12$ MV/m
- **Cooler** (~80m)
 - 201.25 MHz, ASOL lattice
 - 15 MV/m in rf cavities
 - LiH or H_2 cooling
- Captures both μ^+ and μ^-
MAP: 200→325MHz System

- **Drift**
 - 20T → 2T

- **Buncher**
 - $P_0 = 250\text{MeV/c}$, $P_N = 154\text{ MeV/c}$; $N = 12$
 - $V_{rf} : 0 → 15\text{ MV/m}$
 - $f_{RF} : 490 → 365\text{MHz}$

- **Rotator**
 - $V_{rf} : 20\text{MV/m}$
 - $f_{RF} : 364 → 326\text{MHz}$
 - $N = 12.045$

- **Cooler**
 - 245 MeV/c, 325 MHz, 25 MV/m
 - LiH absorbers

325 MHz – much more affordable than 200MHz
more compact, ~1/2 rf power
matches present/future power sources/ frequencies-ILC, PIPII
but more bunches in bunch train for collider (~12 → ~21)
Problem: Beam Losses & Activation

- Beam Loss and Activation
 - 4MW p beam
 - 100 kW secondaries ..
 - ~kW/m losses in line

- Solution: Chicane and Absorber
 - Chicane: bend out ~15\(\times\) 6.5m
 - bend back ~15\(\times\) 6.5m
 - separates high-E particles
 - Absorber
 - ~10 cm Be
 - stops p, \(\pi\), K low-E \(\pi\)

- Localizes beam-related losses to before buncher/rf
• **Add chicane**
 – .6.5m → +15°, 6.5m -15°

• **Add 30 m drift after chicane to absorber**
 – .6.5m → +15°, 6.5m -15°

• **Rematch**
 – particle 1-283 MeV/c → 250
 – particle 2-194 MeV/c → 154
 – Bunch (N=12) 0→15 MV/m :496 → 365 MHz
 – Rotate (N=12.045)– 20 MV/m :365 → 326.5 MHz
 – Cool -325MHz -25 MV/m

• **Obtain ~0.1 \(\mu^+ \) and \(\mu^-/p \)
Compare without/with chicane

-30m
-50m

1600 GeV/c
0 GeV/c

0m (production target)
66m (after chicane/absorber)
88m (after drift)
109m (after buncher)
132m (after rotator)
190m (after cooling)

57m
79m
102m
152m
21 bunches for Collider
Cooling Section – “2-D” cooling only

- Baseline Initial cooling system
 - from IDS Neutrino Factory cooling
 - Consists of rf & LiH absorbers & Alternating Solenoid focusing

- Cools transverse emittance
 - $\sim l_t : 0.016 \rightarrow 0.0065 \text{ m}$
 - $l_L : 0.04 \rightarrow \sim 0.03 \text{ m}$
 - no longitudinal cooling (scrapping)

- $\sim 0.1 \mu / 8\text{GeV} \ p$ within acceptance
 - most beam outside acceptance scraped away

Useful cooling

$N : 0.15 < P < 0.35 \text{ GeV/c}$

$N : \epsilon_T < 0.03$; $A_L < 0.2$

$N : \epsilon_T < 0.015$; $A_L < 0.2$
Vacuum rf or Gas-filled rf?

• Initial design was for vacuum rf within B = ~2T solenoids
 – rf gradient limited within magnetic fields (?)
 • gas-filled rf does not breakdown
 – (but has plasma loading effect)

• Front end can have gas-filled rf
 – same performance as with vacuum rf
 • need a bit higher gradient to compensate energy loss in gas
 – With higher density gas and higher gradient
 • can have some cooling in buncher/rotator
 – better performance

• Would like to increase B → 3T
“FOFO Snake” initial cooling [Y. Alexahin et al.]

• Motivation
 – Obtain front end 6-D cooling
 – equal cooling in x and y
 • cyclotron and drift modes
 – For both μ^+ and μ^-
 • Dispersion+wedge would only cool one sign …
 – (we thought …)

• Principles
 – Alternating solenoid cooling
 – resonance dispersion
 • tilts in solenoids
 \[D_x = \frac{dx_{co}}{d\delta_p} \approx -\pi Q'_x x_{co} \cot(\pi Q_x) \]
 – Longitudinal cooling from path length (E_μ)
Basic Principles of “FOFO Snake”

• **Alternating Solenoid field**
 – Equal cooling of transverse modes
 • cyclotron/drift modes exchange at each flip

• **Resonance Dispersion generation**
 – solenoid tilts generate helical orbit/dispersion
 • $x_{co} \sim 1/\sin(\pi Q_x)$

\[
D_x = \frac{d x_{co}}{d \delta_p} \approx -\pi Q'_x \cdot x_{co} \cdot \cot(\pi Q_x)
\]

 • larger compaction factor if tune $\sim N+\delta$

• **Longitudinal cooling in flat absorbers due to D'**
 • path length (δ_p)

\[
x = x_{co} + D_x \delta_p
\]

 • initially without wedge absorbers
Baseline 325 Mhz cooler example

- 6 cell period
 - $4.2 \text{m, } B_{\text{max}} = 3.7 \text{T}$
 - $\beta_t \approx 0.6 \text{m}$
 - 325MHz rf, 25 MV/m
 - 2.5 mrad Tilts

- Gas filled (1/5 Liquid H$_2$ density)
 - (slabs could also be used)
 - with LiH wedges
FODO snake properties

- 2.5 mrad tilts oriented at
 \[\phi_k = \frac{4\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, 0, \frac{2\pi}{3} \]
 from vertical

- Wedges follow similar rotation
 - Are placed to **cool both signs**: \(\mu^+ \) and \(\mu^- \)

- Eigen values, equilibrium \(\epsilon \)

<table>
<thead>
<tr>
<th>Mode</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tune</td>
<td>1.2271 + 0.0100i</td>
<td>1.2375 + 0.0035i</td>
<td>0.1885 + 0.0049i</td>
</tr>
<tr>
<td>Emittance (mm)</td>
<td>2.28</td>
<td>6.13</td>
<td>1.93</td>
</tr>
</tbody>
</table>

- not balanced in \(x, y \) – (add quad)

- Total cooling channel is
 \(~30\) cells (126 m)
Matching from upstream Rotator

- **Transverse Optics match**
 - constant solenoid to ASOL

- **Helical Orbit match**
 - tilts of solenoids 3-9

- **Longitudinal momentum match**
 - gradual deceleration

 - phases readjusted to compensate for amplitude/momentum correlation
Cooling & Transmission (G4BL)

Effect of energy - transverse amplitude correlation, but otherwise matching is O.K.

Normalized emittances (cm) from Gaussian fit:
\(\mu^+ \) - solid lines, \(\mu^- \) - dashed lines.

Transmission as a ratio of the number of muons in the Gaussian core: red solid line - \(\mu^+ \), blue dashed line - \(\mu^- \).

Final/Initial values (Gaussian fit):

<table>
<thead>
<tr>
<th></th>
<th>(N^{(\text{total})})</th>
<th>(N^{(150<p<360)})</th>
<th>(N^{(\text{core})})</th>
<th>(p^{(\text{cnt})}, \text{MeV/c})</th>
<th>(\varepsilon_{m\nu}, \text{cm})</th>
<th>(\varepsilon_{6Dr}, \text{cm}^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu^+)</td>
<td>5378/11755</td>
<td>5167/7998</td>
<td>5010/7329</td>
<td>208.2/248.0</td>
<td>0.19/1.19</td>
<td>0.36/2.19</td>
</tr>
<tr>
<td>(\mu^-)</td>
<td>5896/12396</td>
<td>5743/9020</td>
<td>5499/8248</td>
<td>207.7/248.8</td>
<td>0.16/1.22</td>
<td>0.46/2.10</td>
</tr>
</tbody>
</table>
Results and discussion

• **Beam phase space**
 – before (blue)
 – after (red)

• **Longitudinal distributions**
 – momentum spread reduced by factor of ~2
Comparison to 2-D cooling

• Cools in 3-D
 – ε_1: 2.2 \rightarrow 0.4 cm; ε_2: 1.2 \rightarrow 0.2 cm; ε_L: 2.4 \rightarrow 0.7 cm
 – ε_t: 1.7 \rightarrow 0.6 (2D)

• More Cooling (than 2-D baseline)
 – but longer channel & stronger focusing
 • up to 120m; B_{max} 2.8 \rightarrow 3.7 T

• Initial Acceptance a bit less than 2-D cooling channel
 – \sim10%

• Better match to downstream systems
 – from longitudinal cooling …
Front End with Helical FOFO cooler preferred

- Smaller momentum spread bunches will fit into downstream components more easily
 - Acceleration transition 325→650 MHz can occur earlier
 - at ~1 GeV/c for nu-Factory → “NuMAX” scenario
 - Cooling transition 325→650 for collider sooner …
 - losses reduced; separation of μ^+ and μ^- easier …

- Deceleration to a lower energy muon beam (mu2e?) easier, with fewer losses
To Do

- Write-up current status for JINST volume
- Variations / Improvements -- ?
- Scale back to low-energy applications
 - smaller, lower field system capturing at 150 MeV/c
 - 50m → 25m
 - → 100 MeV/c
 - ~0.05 μ/p
Summary

This might look like an ordinary PowerPoint slide.

But it is actually a portal to another dimension in which energy and position have traded places.

Stop playing with my slides.

Beware the beast that crosses over.
Backup slides
Low-E capture

- Capture at low momentum
 - prepare beam for low-E μ experiment
- Somewhat scaled back version of front end
 - 30.4m drift
 - shorter buncher /rotator
 - 12m / 13.5m
 - 0→15 MV/m, 15 MV/m
 - vacuum rf
 - B=2T

- Parameters
 - 150 MeV/c … 100 MeV/c reference particles
 - 77.8 // 39.8 MeV
- Bunch to 150 MeV/c

- Cooling at 2T (1-D cooling)
simulation of low-E buncher

- Used Ding initial beam
 - initial beam cut off at ~70 MeV/c
 - 21 MeV kinetic energy
 - bunch train formed

- Cooling from 60m to 100m
 - longitudinal antidamping
 - $g_L = \sim -0.5$
 - $B=2T, 2cm$

- more used to separate captured from uncaptured beam

- $\sim 0.05 \mu/p$ within acceptance ??
 - not sure what acceptance criteria to use