BESSY-VSR

A novel application of SRF for Synchrotron Light Sources

Adolfo Vélez*, A.Jankowiak, J.Knobloch, A. Neumann, M.Ruprecht, H.W. Glock, G.Wüstefeld

SRF Conference 2015
Whistler CA
13-18 Sept. 2015
OUTLINE

• BESSY VSR
 – The BESSY VSR concept

• BESSY VSR challenges

• SRF Systems
 – Cavity design status
 – Module arrangement
 – Cryogenics
 – RF power

• Prototypes and measurements

• Future work and Conclusions
• BESSY II is a 1.7 GeV synchrotron radiation source operating for 20 years in Berlin
• Core wavelength in the range from Terahertz region to hard X rays
• BESSY has ben developing a comunity of user performing dynamic measurements in ps and fs range „functional materials“
• Pioneer in offering low α and femtoslicing facility

In order to remain competitive among the international synchrotron sources a superconducting upgrade is undergoing

BESSY III
Third generation light sources move in the direction of minimizing beam emittance

ESRF (Grenoble), Spring-8 (Japan), APS (USA) → DLSR by multi-bend achromats (MBA)

- Complete new ring
- New magnet/vacuum system
- Long dark time (1 year ESRF)
- Very expensive

BUT ...

Short pulse experiments represent one of the strong fields at HZB (low-Alpha, femtoslicing).

Such a pitty to lose!

A complementary approach to DLSRs

BESSY VSR
The concept of BESSY VSR

BESSY II @ present

Normal conducting cavity system

- Limited pulse length in storage ring
 \[\sigma \propto \sqrt{\frac{\alpha}{V_{rf}}} \]
 \(\rightarrow \) Machine optics
 \(\rightarrow \) Hardware (RF cavities)

- At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

- Low alfa operation only 12 days/year (all beamlines) ------ Low flux
- Femtoslicing is continuously operated (only 1 beamline) ------- Low flux

Can we design a system offering both possibilities simultaneously?
The concept of BESSY VSR

BESSY II @ present

- Limited pulse length in storage ring
 \[\sigma \propto \sqrt{\frac{\alpha}{V_{\text{rf}}}} \]
 - Machine optics
 - Hardware (RF cavities)
- At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

Supply short pulses down to 1.5 ps

100× more bunch current

Low \(\alpha \) permits few 100 fs

Configure BESSYVSR so 1.5 ps and 15 ps bunches can be supplied simultaneously for maximum flexibility and flux!
The concept of BESSY$^{\text{VSR}}$

BESSY II, SC Upgrade

Present

- Voltage: 1.5 MV @ 0.5 GHz
- Time: ~4.2 m

Phase I

- Voltage: 20 MV @ 1.5 GHz
- Time: ~4.2 m

Impedance heating problems

Touschek lifetime issues

J. Feikes, P. Kuske and G. Wüstefeld.
"Towards Sub-picoseconds electron bunches: Upgrading ideas for BESSY II"
EPAC2006
The concept of BESSY VSR

BESSY II, SC Upgrade

cavity V_1, f_1

cavity V_2, f_2

• 1.5GHz and 1.75GHz ---- RF beating (modulate RF focusing)
• Odd (voltage cancelation, 15 ps bunches)
• Even (voltage addition, long focussing, 1.7 ps)

Voltage: 1.5 MV @ 0.5 GHz

Voltage: 20 MV @ 1.5 GHz

Voltage: 20 MV @ 1.5 GHz + 17.1 MV @ 1.75 GHz

G. Wüstefeld et al.
“Simultaneous long and short electron bunches in the BESSY II storage ring”
IPAC2011
The concept of BESSY $^V_{SR}$

BESSY II, SC Upgrade

BESSY VSR filling pattern

- High concentration of long bunches populated with high current (flux hungry users)
- Few short bunches placed at will (high current short bunches, slicing bunches ...)

Present

- Voltage: $1.5 \text{ MV @ } 0.5 \text{ GHz}$

Phase I

- Voltage: $20 \text{ MV @ } 1.5 \text{ GHz}$

Phase II

- Voltage: $20 \text{ MV @ } 1.5 \text{ GHz} + 17.1 \text{ MV @ } 1.75 \text{ GHz}$
BESSY II, SC Upgrade

BESSY VSR filling pattern
- High concentration of long bunches populated with high current (flux hungry users)
- Few short bunches placed at will (high current short bunches, slicing bunches ...)

Chopper Wheel

Resonance Islands

Incoherent excitation

M. Cammarata et al. “Chopper system for time resolved experiments with synchrotron radiation”. In: *Review of Scientific Instruments*

A.Velez, SRF15 Whistler CA
The concept of BESSYVSR

BESSY II , SC Upgrade

\textbf{BESSY VSR filling pattern}

- High concentration of long bunches populated with high current (flux hungry users)

- Few short bunches placed at will (high current short bunches, slicing bunches ...)

\textbf{BESSY II is a low energy machine (1.7GeV)}

The whole BESSY VSR installation fits into a single low β straight

No changes is the BESSY optics are needed !!
Project challenges

Bunch length: theory v. reality
- Reality: bunch lengthening due to CSR-driven instabilities at high current

High-gradient SRF cavities
- 20 MV/m CW operation
- Particulate free vacuum \((10^{-10} \text{ mbar})\) in an otherwise “dirty” machine.

Transparent “parking” of cavities in case VSR needs to be “switched off”

Coupled-bunch instabilities
- Higher-order modes in SRF systems in relation to beam spectrum
- Very strong damping of HOMs
- Sufficiently strong bunch-by-bunch feedback to suppress instabilities

Transient beam loading due to fill pattern & Robinson instabilities
- RF and tuning control parameters for the cavities
- Proper choice of bandwidth and available RF power
- Changing bunch profile along bunch train

Injection, top-up operation and lifetime issues
- Injection of long booster bunches into short BESSY-VSR buckets
- Reduced Touschek lifetime

Technical realization
- Integration in a single straight
- Cryogenic installation
- Required infrastructure for system development and tests

Technical design study
SRF Systems challenges

- CW operation @ high field levels $E=20$ MV/m
- On the edge field values on the surface (discharges, quenching)
- High beam current ($I_b=300$ mA)
- Cavities must be highly damped (CBIs)
- Imposed design restrictions: iris diameter, beam-pipe diameter ...

The combination of **CW operation, high voltage** and **high beam current** in a storage ring make the design a challenging goal to achieve.

2@1.5 GHz 2@1.75 GHz
1.5 GHz Cavity design

Stage 1: Cavity geometry

Design specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{acc}</td>
<td>20 MV/m</td>
</tr>
<tr>
<td>I_{beam}</td>
<td>\leq 300 mA</td>
</tr>
<tr>
<td>E_{pk}/E_{acc}</td>
<td>\leq 2.3</td>
</tr>
<tr>
<td>B_{pk}/E_{acc}</td>
<td>\leq 5.3 mT/(MV/m)</td>
</tr>
<tr>
<td>R/Q</td>
<td>\geq 100 Ω</td>
</tr>
<tr>
<td>K for TM$_{010}$</td>
<td>\geq 3%</td>
</tr>
<tr>
<td>μ_{eff} for TM$_{010}$</td>
<td>\geq 97%</td>
</tr>
</tbody>
</table>

1.5 GHz design

SRF Specifications fulfilled

<table>
<thead>
<tr>
<th>Cavity parameter</th>
<th>Design goal</th>
<th>HIZB</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{pk}/E_{acc}</td>
<td>\leq 2.3</td>
<td>2.29</td>
</tr>
<tr>
<td>B_{pk}/E_{acc}</td>
<td>\leq 5.3 mT/(MV/m)</td>
<td>4.4 mT/(MV/m)</td>
</tr>
<tr>
<td>R/Q</td>
<td>\geq 500 Ω</td>
<td>525 Ω</td>
</tr>
<tr>
<td>K for π-TM$_{010}$</td>
<td>\geq 3%</td>
<td>3.3%</td>
</tr>
<tr>
<td>μ_{eff} for π-TM$_{010}$</td>
<td>\geq 97%</td>
<td>98.2%</td>
</tr>
</tbody>
</table>

Operation problems derived from high field values prevented
1.5 GHz Cavity design

Stage 1: Cavity geometry

Base models
- Cornell 1.3 GHz (scaled)
- Jlab 1.497 GHz

Big iris diameter for high cell-cell coupling
Φ = 71.34 mm

1.5 GHz design

HZB optimized model

SRF Specifications fullfilled

<table>
<thead>
<tr>
<th>Cavity parameter</th>
<th>Design goal</th>
<th>HZZB</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{pk}/E_{acc}</td>
<td>≤ 2.3</td>
<td>2.29</td>
</tr>
<tr>
<td>B_{pk}/E_{acc}</td>
<td>$\leq 5.3 \text{ mT/(MV/m)}$</td>
<td>4.4 \text{ mT/(MV/m)}</td>
</tr>
<tr>
<td>R/Q</td>
<td>$\geq 500 \Omega$</td>
<td>525 \Omega</td>
</tr>
<tr>
<td>K for π-TM$_{010}$</td>
<td>$\geq 3%$</td>
<td>3.3%</td>
</tr>
<tr>
<td>μ_H for π-TM$_{010}$</td>
<td>$\geq 97%$</td>
<td>98.2%</td>
</tr>
</tbody>
</table>

Operation problems derived from high field values prevented

A.Velez, SRF15 Whistler CA
1.5 GHz Cavity design

Stage 1: Cavity geometry

Base models
- Cornell 1.3 GHz (escaled)
- Jlab 1.497 GHz

Big iris diameter for high cell-cell coupling
\(\Phi = 71.34 \text{mm} \)

Stage 2: HOM damping

- Analyze HOM in relation to beam spectrum
- Provide strong HOM damping in order to avoid CBIs
End-groups and Damping

Calculations show high HOM damping level required to avoid CBI’s

- 5e4 Ω, longitudinal modes
- 1e7 Ω/m, transverse modes

Modified WG. Damping (b ≠ a/2)

Enlarged beam-tubes

- f = 2.755 GHz
- 4xTE_{01}
- 2xTE_{10}

A.Velez et al. WEPMA013
IPAC15
A.Velez et al. MOPP071, LINAC’14
End-groups and Damping, adding a coaxial coupler

Heavily damped 1.5 GHz prototype (with FPC+WG dampers)

All analyzed modes except 1 are below the Impedance threshold (with feedback)

Table 1: BESSY VSR filling pattern with calculated loss factor for the different bunch δ

<table>
<thead>
<tr>
<th>n</th>
<th>I (mA)</th>
<th>δ (mm)</th>
<th>k/l, α=4/3</th>
<th>k/l, α=0.59</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.51</td>
<td>48</td>
<td>13</td>
</tr>
<tr>
<td>150</td>
<td>1.65</td>
<td>4.5</td>
<td>2.6</td>
<td>3.55</td>
</tr>
<tr>
<td>150</td>
<td>0.18</td>
<td>0.33</td>
<td>85.8</td>
<td>16.9</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>8.1</td>
<td>1.21</td>
<td>2.45</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1.11</td>
<td>17</td>
<td>8.18</td>
</tr>
</tbody>
</table>

Table 2: Calculated HOM power for different scaling of the loss factor (k) for the BESSY VSR filling pattern

<table>
<thead>
<tr>
<th>Σn</th>
<th>Σl</th>
<th>Σ(C) P_{HOMA}=4/3</th>
<th>P_{HOMA}=0.59</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>300.3</td>
<td>2.4e5</td>
<td>1.2kW</td>
</tr>
</tbody>
</table>

HOM power of 1 KW need to be damped with the most possible compact design (module length limitation)

Courtesy of M.Ruprecht

A.Velez, SRF15 Whistler CA
1.75 GHz Cavity design

- Design work started with a scaled version of the 1.5 GHz 5-cell cavity.
- The RF and HOM damping techniques developed on the 1.5 GHz cavity can be implemented in order to fine tune the design (if needed).
1.75 GHz Cavity design

- Design work started with a scaled version of the 1.5 GHz 5-cell cavity.
- The RF and HOM damping techniques developed on the 1.5 GHz cavity can be implemented in order to fine tune the design (if needed).

Concatenation of cavities

- Different iris sizes. Tapered transitions are needed to avoid modal overlapping between cavities and fundamental power leakage (TM_{010}).
- Possible high Q trapped modes generated in the tapered transitions (CBIs).
- Limited module space (4.2m).
- Possible heating on belows, HOM dampers ...
- In case higher damped needed beam-tube dampers might not be feasible.
- Concatenation studies currently undergoing

T. Flisgen et al.
IPAC2014 TUNAB01 (2014)
Prototypes and Measurements

Copper prototype (1.5GHz)
(5 WG+1 FPC) with Rotary mechanical flanges
To be measured in standard bead-pull test-bench

A new cold-bead-pull test stand has been developed by HZB in order to measure field characteristics of Nb prototypes in SUPERCONDUCTING STATE at HoBiCat

First results obtained from 1.8K measurements of a 9 cell Tesla Cavity

A.Velez et al, TUPB078, this proceedings
Future work and conclusions

Work in progress ...

• Study effects of undamped energy propagated through the beam-pipes to the ring. Heating issues.

• Concatenation studies. Cavity-cavity coupling, energy damping and impedances.

• Thermal studies (waveguides, flanges...).

 • Studies on tuning HOMS

 • FPC Coupler design.

• Multipacting on transitions (iris-damper, damper-B.P)

 • Fabrication of prototypes.

Poster
TUAA03
Thank you for your attention