Laser polishing of niobium for SRF applications
Liang Zhao 1,2, Michael Klopf 1, Charles Reece 1, Michael Kelley 1,2
1 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
2 The College of William and Mary, Applied Science Department, Williamsburg, Virginia 23187

Abstract
Smooth interior surfaces are desired for niobium SRF cavities, now obtained by buffered chemical polish (BCP) and/or electropolish (EP). Laser polishing is a potential alternative, having advantages of speed, freedom from chemistry and in-process inspection. Here we show that laser polishing can produce smooth topography with Power Spectral Density (PSD) measurements similar to that obtained by EP. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damaging it. Computational modeling was used to simulate the surface temperature and explain the mechanism of laser polishing.

Background
- SRF cavity inner surface should avoid sharp features to have decent performance.
- Laser polishing removes sharp features on metal surface using heat deposited by laser. Metal surface should be partially melted for polishing effects. Overheating will result in ripples and surface damage. Under heat will not smooth the surface. The amount of heat deposition can be controlled by fluence and pulse displacement. Pulse displacement means the distance between two sequential laser pulses.
- PSD gives more detailed information than RMS on sharp features on the surface.

Experiment
High Intensity Peak Power Laser
(HIPPO) laser

Laser
Wavelength 1064 nm,
Repetition rate 19 kHz,
Pulse length 8 ns,
Beam area 7.84x10^-5 cm^2,
Beam width 96 µm FWHM,
Repetition rate 19 kHz.

Niobium Disk,
 Diameter 49 mm,
 Thickness 3.2 mm.

Fluence
of pulse overlap
Pulse displacement
Scan speed

1/cm^2
within one spot width
µm
cm/s

0.18~0.61
15~960
6.4~40
12.16~0.19

0.61 J/cm^2
32 pulses overlapped
3 µm pulse displacement
Scanning speed 5.7 cm/s
melt depth 520 nm

Simulation
- One-dimensional conduction heat transfer equation
- Constant thermal properties
- No radiant heat loss or melting

Fluence within this range can polish the surface if proper pulse displacements are chosen.

0.24 J/cm^2
53 pulses overlapped
1.8 µm pulse displacement
Scanning speed 3.42 cm/s
melt depth 50 nm

Surface with sharp features (like BCP) shows a straight line on PSD.

Smooth surfaces (like EP surface) shows a curved PSD with two distinguishable stages.

Conclusion
- Polishing of niobium using laser is achievable by proper combination of fluence and pulse displacement.
- Comparison of topography and PSD analysis of laser polishing with other polishing methods shows that laser polishing smoothens sharp features in a way similar to EP.
- One dimensional heat conduction model shows that melting depth from 50nm to 520nm can result in surface polishing given proper pulse displacement.

Reference

Acknowledgement
This work was supported by the U.S. Department of Energy Office of High Energy Physics under grant DE-FG03-02ER41208. The experiment was conducted at Jefferson Lab. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. Thanks to staff at the College of William and Mary characterization lab, especially Olga Trifonova for the AFM images. Thanks Chen Xu for the PSD program. Thanks Ant Palczewski for helping with CBP samples.