CALIBRATION AND CHARACTERIZATION OF CAPACITIVE OST QUENCH DETECTORS FOR SRF CAVITIES AT IPN ORSAY

M. Fouaidy, F. Dubois, J-M. Dufour, D. Longuevergne, G. Michel, A. Maroni, J-F Yaniche, IPN Orsay Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 91406 ORSAY cedex

Abstract

The maximum RF surface magnetic field (B_S) achieved with SRF bulk Nb cavities is often limited by anomalous losses due to Joule heating of normal-resistive defects embedded onto the RF surface. At high B_S (e.g. B_S>50 mT), the defect temperature increases strongly with B_S, leading to a thermal runaway of the cavity or quench. The unloaded quality factor Q_0 of the cavity decreases suddenly and strongly due to superconducting to normal state phase transition of the hot spot area. Quench detectors, called Oscillating Superleak Transducer (OST) and sensing 2nd sound events in He II, have been recently used to study quench of SRF cavities. IPN developed its prototypes of OST quench detectors and a test stand for their calibration and characterization in the temperature range T_0=1.6 K-2.2 K. This device allows precise and controlled experimental simulation of SRF cavity quench using pulsed heat sources. Experiments were performed to study the dynamic response of OST detectors when the heat source is subjected to a time varying heat flux $q(t)$ as function of several parameters (T_0, $q(t)$ time structure and density, heat source size) and first experimental data are presented.

INTRODUCTION

Thanks to the tremendous R&D effort by different laboratories around the world and to the use of high purity material and well assessed fabrication and preparation procedure, SRF bulk niobium cavities are nowadays operated reliably at high accelerating gradient which correspond to surface magnetic field B_S >50 mT [1]. However, the maximum RF surface magnetic field (B_{max}) achieved with SRF bulk Nb cavities is often limited by anomalous RF losses due to Joule heating of normal-resistive defects or inclusions embedded [1-2] onto the RF surface. The typical effective diameter and surface resistance of these defects are respectively in the range 1-100 µm and 1-10 mΩ. For example at B_S=50 mT, the heat flux density q_{defect} due to Joule heating of a defect area is 0.8×10^6 W/m² in contrast to RF losses in the superconducting RF surface region (q_{SRF}=0.8 W/m²). Due to such very high heat flux in a defect zone, and to the quadratic dependence of Joule RF losses with B_S (e.g. $q \propto B^2_S$), the temperature increases strongly with B_S especially in the defect area. This heating increases the RF surface temperature in the vicinity of the defect beyond the critical temperature T_C (B_S) of niobium resulting in a dramatic increase (e.g. by 5 to 6 orders of magnitude) of the local RF losses. This catastrophic process leads generally to a thermal runaway of the SRF cavity or quench as soon as the hot spot area effective diameter exceeds a critical value for which the unloaded quality factor Q_0 decreases strongly. Obviously, the thermal quench of SRF cavity is easily detectable with RF probes (i.e. transmitted and/or reflected RF power). However, as it is an overall measurement, RF signals are insufficient to characterize completely the thermal runaway and are unable to locate quench source. Dedicated diagnostic tools are then needed in order to study thoroughly and investigate in details quench phenomena.

BRIEF HISTORY OF THERMAL DIAGNOSTIC TOOLS OF ANOMALOUS RF LOSSES IN SRF CAVITIES

The first generation of sensors dedicated to diagnostic of anomalous RF losses and thermal breakdown events was developed in ~1980. These sensors are special surface thermometers (Fig. 1), which allow the measurement of the outer surface temperature [3-5] of SRF cavities cooled by Liquid Helium (LHe). These thermometric resistive sensors, which operate in sub-cooled normal LHe or He I bath or saturated superfluid helium bath, are of two types: a) Scanning Surface Thermometers (SST), b) Fixed Surface Thermometers (FST).

Fig. 1: Surface thermometers of IPN Orsay for measurement of liquid helium cooled SRF cavities wall temperature.

Due to the cooling medium (saturated boiling He I, sub-cooled He I, saturated superfluid helium or He II at bath temperature T_{bath}< T_C) and the measurement configuration, SST are intrinsically limited [3-4] when operated in He II: 1) low measurement efficiency (~1-2%), 2) lack of reliability, lack of repeatability. FST are also practically limited because a large number (i.e. >>100) of such sensors is needed [4-7] in order to ensure a good spatial resolution. Second generation of quench detectors in superfluid helium, namely OST (Oscillating Super Leak Transducer), were developed in 1970 for fundamental research on He II thermo-hydrodynamics [8]. These OST, which are capacitive quench detectors, based on second sound (temperature wave) measurements in superfluid Helium (He II), were applied to SRF cavity thermal breakdown investigation nearly 5 years ago [9].
More recently, it was suggested to use Low REsponse TIme (<< 1ms) REsistive THermometers (LRETIRETH) as quench detectors.

EXPERIMENTAL SET-UP

Description of OST Detectors Developed at IPN Orsay

We used the original design, of OST developed by Z.A Conway [9]. It is a capacitive sensor (Fig. 2-Fig. 3). The first rigid electrode, is a brass disk (O.D: 16 mm, Thickness: 4.1 mm), imbedded in the body of the sensor which is made of aluminium alloy. Moreover, the deformable Active Electrode bonding agent, which is the dielectric insulator is an epoxy resin (STYCAST 2650 MM). The active deformable electrode is a polycarbonate semipermeable (Pore diameter: 0.2 µm) membrane of 6 to 11 µm thickness and coated with 50nm thick aluminium onto upper surface for electrical contact. Finally a SMA base connector is attached to the brass electrode.

Cryogenic Insert for Calibration and Full Characterization

![Fig. 4: Cryogenic insert for quench detectors characterization.](image)

![Fig. 5: SMD type resistors.](image)

Test Cells and Configuration of Sensors

In order to investigate the effect of the heater geometry, and the distance of the sensors to the quench-like source, we performed experimental runs with different configurations. Cylindrical resistive heaters and SMD resistive heaters of different size were used for this purpose. Moreover, we used two industrial bare ship 1050 BC CERNOX resistors, named CX here after as LRETIRETH. The different experimental configurations tested actually are summarized in Table 1 and a close view of the three test cells used, are illustrated in Fig. 6-Fig. 8. The measured resistances values at $T_{\text{bath}}=2$ K of the different heaters are in the range 55 Ω - 60 Ω.
EXPERIMENTAL RESULTS AND DISCUSSION

Experimental Procedure

Several experiments were performed at different T_{bath}. Prior to the measurements of the response of the sensors (OST and CX), we calibrated the CX resistors by comparison to a CERNOX 1050SD thermometer calibrated at IPN Orsay. For this purpose, we naturally used the Lhe saturated bath as thermostat: using a MKS pressure transducer, a PID pressure controller and a motorized butterfly valve, T_{bath} was regulated to better than 0.2 mK for $T_{\text{bath}} < T_\lambda=2.1768$ K, via the vapour pressure control. After thermometers calibration, we then measured the response of quench detectors to a pulsed heat flux generated by the different heaters.

The Observed Signals

During the first experimental runs, due to insufficient electromagnetic shielding, we observed very noisy signals for both OST and fast response thermometers. After an important effort of shielding of the whole experimental set-up from the sensors to the data acquisition system, the signal to noise ratio of the thermometric signals was significantly improved (i.e. more than order of magnitude). Two examples of second sound signals as observed at $T_{\text{bath}}=2$ K by the sensors OST#1 and OST#2 of the test-cell #3 are illustrated in Fig. 9. Fig. 10 for two different values of the polarization voltage at a given a pulsed heat flux (peak value $q_P=753$ W/cm2) with a pulse duration $T_P=100$ µs and at a repetition rate $f_{\text{rep}}=10$ Hz. For the run shown in Fig. 9, the applied polarization DC voltage was $V_P=50$ V while in the case depicted in Fig. 10, $V_P=150$ V: the measured signal is improved by a factor 5 increasing from 180 µV to 890 µV when V_P is increased by a factor 3.

Table 1: Test Cell Configurations

<table>
<thead>
<tr>
<th>Test cell geometry</th>
<th>Heater Area (mm2)</th>
<th>Sensor type</th>
<th>Sensor location (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder</td>
<td>12.9</td>
<td>CERNOX #1</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>24.2</td>
<td>CERNOX #2</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>79.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder</td>
<td>12.9</td>
<td>OST#4</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>24.2</td>
<td>OST#3</td>
<td>41</td>
</tr>
<tr>
<td>Flat-SMD</td>
<td>1.3</td>
<td>OST#1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>OST#2</td>
<td>31</td>
</tr>
</tbody>
</table>

Fig. 6: Test cell #1.

Fig. 7: Test cell #2.

Fig. 8: Test cell #3.

Fig. 9: Response signals of OST #1(red) and OST # 2 (green) to a pulsed heat flux $q_P=753$ W/cm2 for $V_P=50$ V.

Fig. 10: Response signals of OST#1 (red) and OST#2 (green) to a pulsed heat flux $q_P=753$ W/cm2 for $V_P=150$ V.

Notice that two type of behaviour were observed concerning the effect of V_P on OST signals: a) linear increase of signal amplitude with V_P, b) amplitude which is not dependent on V_P. An example of second sound signals as observed at $T_{\text{bath}}=2.1$ K by the thermometers CX#1 and CX#2 is shown in Fig. 11 for a pulsed heat...
flux (peak heater power $Q_P = 38$ W, pulse duration $\tau_P = 100\mu s$ and at a repetition rate $f_{rep} = 10$ Hz). As expected, thermometric signals are very weak: the measured peak values are in the range 1-100 μV for a sensing current of 20 μA. It should be stressed that thermometric signals are still perturbed (e.g. cross talk) by the heater signal even with careful electromagnetic shielding.

![Cylinder heater pulsed voltage](image1)

Fig. 11: Response signals of CERNOX #1 (red) and CERNOX #2 (green) to a pulsed heat flux $Q_P = 38$ W.

The observed first peaks of the thermometric signals shown in Fig. 11 corresponds to heating $\Delta T = 0.3 mK$ for CX#2 and $\Delta T = 0.08 mK$ for CX#1. Moreover, the measured second velocity at $T_{bath} = 2.1$ K as deduced from thermometric signals of Fig. 11 is 12.6 m/s which is close (to within 1.4 %) to precise measurements (e.g. 12.42 m/s) performed by Wang et al.[10]. The observed second sound signals shape and time structure, as measured either by OST or LRETIRETH, depends strongly on the experimental configuration and in particular on the heater geometry. More precisely, the geometry of the heat source or the excitation source that generates the second sound determines if the resulting wave is planar, cylindrical or spherical. The type of involved second sound wave determines in turns the temporal structure of the sensors response to a pulsed excitation. More precisely according to theory, in the case of cylindrical or spherical second sound wave configuration, the propagating shock wave should show a heating (compression) followed by cooling (rarefaction) at given location from the pulsed heat source.

Such behaviour was previously observed by several authors. In our case, for cylindrical heat source, one observes pseudo-sinusoidal response to a pulsed excitation as it is clearly shown in Fig 11-Fig 12. The time structure of the observed OST or CX sensors signals are similar to damped oscillations, which leaded to misinterpretation by some previous studies. In the case of spherical second sound shock wave propagation (e.g. flat SMD heater), we observed (Fig. 13) the theoretically expected signal but with a slightly different time structure as compared to cylindrical case: the decay time of oscillations is shorter in the case of spherical wave.

![Peaks of second sound signal](image2)

Fig. 12: Response of OST #3 (red) and OST #4 (green), at $T_{bath} = 2.1$ K to a pulsed heat flux $Q_P = 48.3$ W/cm², with $\tau_P = 100 \mu s$ for $V_P = 150 V$. Test cell #2: cylindrical heater area = 79.5 mm² (O.D = 5.3 mm, Length = 15 mm).

![Cross talk perturbation by heater signal](image3)

Fig. 13: Response of OST #1 (red) and OST #2 (green), at $T_{bath} = 2.1$ K to a pulsed heat flux $Q_P = 753$ W/cm², with $\tau_P = 100 \mu s$ for $V_P = 150 V$. Test cell #3: Flat SMD heater area = 5.1 mm².

Additional tests will be carried out to clarify this behaviour and whether or not this is due to heat source geometry.

Second Velocity

As mentioned above, second sound signals were successfully recorded by both OST and CX thermometers. From these data, we have deduced by cross-correlation experimental values of the second sound velocity U_2. The corresponding results, as deduced from OST signals, are illustrated in Fig. 14. Measurements were performed by two different procedure stabilize He II bath temperature at different values then subject the heaters to pulsed heat flux and simultaneously monitoring OST and CX signals versus time, b) subjecting the heaters to pulsed heat flux and simultaneously monitoring OST and CX signals versus time while He II bath temperature is slowly drifting. The data obtained by the two methods are in very good agreement. The solid red circles were obtained by the first method using the test cell #3 and cross correlation between OST #1 and OST #2. The solid blue triangles were obtained by the second method using...
Moreover our experimental data are in very good agreement with previous experimental results reported by Donnelly group [10]. Note that second sound velocity was also deduced from the thermometric signals (e.g. time flight between heater and CERNOX #2) leading to data (not illustrated in Fig. 14) in very good agreement with those from OST sensors.

Experimental Observations About Signal Time Structure

The pseudo-sinusoidal like response to a pulsed excitation shown in Fig. 12, was systematically studied as function of T_{bath}. This test was performed with test cell #2. The frequency of oscillations of OST#3 sensor was measured as function of second sound velocity (Fig. 15), which varies with T_{bath}. The peak heater power and pulse duration are respectively $Q_p=38$ W and $T_p=100$ µs at a repetition rate $f_{rep}=10$ Hz.

The results shown in Fig. 15 show a linear increase of the oscillation frequency with respect to second sound velocity. This confirms that these pseudo-oscillations have a physical meaning to be clarified and is not a characteristic of the OST membrane mechanical behaviour.

CONCLUSION AND OUTLOOK

In the frame of a R&D program dedicated to the development of diagnostic tools for in situ quench detection and locating in SRF Cavities, IPN developed its first prototypes of OST quench detectors and a cryogenic test stand for their calibration and full characterization in the saturated He II temperature range $T_{bath}=1.6$ K-2.2 K. This device allows precise and controlled experimental simulation of SRF cavity quench using pulsed heat sources. This experimental set-up will help to progress in locating and characterizing quench sources in SRF cavities. Experimental tests on various bulk niobium SRF cavities (e.g. QWR, spoke and elliptical resonators) with quench detectors (OST and LRETIRETH) are planned in the near future. In particular, we plan to study the quench dynamics and critical size of hot spot normal resistive area leading to SRF cavity quench.

ACKNOWLEDGMENT

Many thanks to the technical staff of Accelerators Division and Instrumentation Division of IPN Orsay for their valuable help in the various steps of preparation of all the tests.

REFERENCES