WEB BASED MACHINE STATUS DISPLAY FOR THE SIAM PHOTON SOURCE

N. Suradet, C. Thamtong, C. Preecha, S. Klinkhieo, P. Klysunub
SLRI, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand

ABSTRACT
A new machine operation status broadcasting system has been developed for Siam Photon Source (SPS), a 1.2 GeV synchrotron light source in Thailand. The system is implemented using web-based interface, and broadcasts the information over the SPS website, mobile application, as well as local TV network within the SPS facility, allowing users as well as technical personnel to easily access various of information related to the machine via web browsers and other mediums. The new system also provides supporting message services for alarm, event notification, and other operational necessities. In this report, the design of web and mobile applications, which are based on HTML5, CSS3, and adopts PHP, AJAX, Bootstrap framework (for responsive design), jQuery, High charts JS, Twitter widget, and others, will be described. The details of the hardware and software configurations, users requirements and satisfactions, as well as suggestions on further improvements, will be presented.

INTRODUCTION
The original machine operation status broadcasting system was developed back in 2000, providing the operation status of the machine, for e.g. beam current, beam lifetime, beam energy, to users, who can access the provided information through the internal cable TV system within the facility. Each display channel receives the machine status data from a LabVIEW program located on a computer server. Since this system was available only for on-site users, another system was developed in 2006 to provide the machine status information via the internet. The fundamental language used to create this web-based system was static HTML. The displayed beam current and lifetime chart was captured from a NI LabVIEW window. This web-based system has two main disadvantages. First, it consumes quite a bit of the network bandwidth because the whole web page had to be constantly updated, and the size of the chart image was quite large. Secondly, the system cannot display the data in real-time. We found it necessary to develop a new system that is more robust, more responsive, and more accessible.

SOFTWARE ARCHITECTURE
The machine status data originates from a variety of sources. These sources/hardwares are interconnected via an assortment of interface standards (OPC, GIPB, RS-232, etc.). A data logging program written with LabVIEW and installed on an acquisition server is employed to continuously gather all the machine data and log them into a database. The logging interval is 5 seconds. Open source database MySQL was chosen for our purpose. LabVIEW MySQL connector toolkit allows LabVIEW to communicate with MySQL (version 4.1 or later) via the TCP/IP protocol. It is a part of the LAMP (Linux-Apache-MySQL-PHP) platform that has to be installed on the web server.

When the user opens the SPS machine status web page, the browser on the client side will make a request for the PHP webpage to the web server. The web server responds by sending HTML, JavaScript, and CSS scripts to the client for processing, so that the execution is performed by the client browser. We use AJAX (Asynchronous JavaScript And XML) to help refresh the web page for updating the data. AJAX runs a background operation which extracts the data from the database in the XML/JSON data format every 5 seconds. It updates the data field of the web page without reloading the whole page, thereby substantially reducing the traffic demand on the network.

MOBILE APPLICATION
An iOS web application was written for iOS-based devices. The web app can be installed from the Safari web browser, and can be accessed later from the iOS home page, as shown in (a). The program simply retrieves the machine data from the machine status webpage.

CONCLUSION
The new SPS machine status broadcasting system has been in use for approximately 8 months since February 2014. The system is found to be robust, effective, and user-friendly. Future plan includes making it available for devices based on other platforms.