Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade
Outline

• Introduction / Scope
• Design
 • Overview & Parameters
• Procurement
 • Planning
 • Execution
 • Lessons Learned
• Production
 • Facilities & Planning
 • Execution
 • Acceptance Testing
 • Lessons Learned
• Installation / Check out & Commissioning
 • Planning
 • Execution
 • Performance
 • Lessons Learned
• Cost & Schedule
 • Lessons Learned
• Summary & Acknowledgements
Introduction to Jefferson Lab

>1200 active member international user community engaged in exploring quark-gluon structure of matter

Superconducting electron accelerator provides 100% duty factor beams of unprecedented quality, with high polarization at energies up to 6 GeV

Test Lab (SRF) Renovation and Technology & Engineering Development Facility Complete
Two 0.6 GeV linacs

Add arc

Add 5 cryomodules

20 cryomodules

New cryomodules get new rf zones

Add beamline

Add 5 cryomodules

20 cryomodules

Upgrade magnets and power supplies

HALL D

12 GeV CEBAF

Page 4
SCOPE OF 12 GeV UPGRADE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Present JLab</th>
<th>Upgraded JLab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Halls</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Number of passes Halls A/B/C</td>
<td>5 (for max energy)</td>
<td>5 (for max energy)</td>
</tr>
<tr>
<td>Max Energy to Halls A/B/C</td>
<td>up to ~6 GeV</td>
<td>up to ~11 GeV</td>
</tr>
<tr>
<td>Number of passes to Hall D</td>
<td>New Hall</td>
<td>5.5</td>
</tr>
<tr>
<td>Energy to Hall D</td>
<td>New Hall</td>
<td>12 GeV</td>
</tr>
<tr>
<td>Current – Hall A & C</td>
<td>max ~180 µA combined</td>
<td>max ~85 µA combined (higher at lower energy)</td>
</tr>
<tr>
<td>Current – Hall B & D</td>
<td>(B) Up to 5 µA max</td>
<td>(B, D) Up to ~5 µA max each</td>
</tr>
<tr>
<td>Central Helium Liquefier (CHL)</td>
<td>4.5 kW</td>
<td>9 kW</td>
</tr>
<tr>
<td># of cryomodules in LINACS</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Accelerator energy per pass</td>
<td>1.2 GeV</td>
<td>2.2 GeV</td>
</tr>
</tbody>
</table>

Routinely provide beam polarization of ~85% now, same in 12 GeV era
- Eight-seven cell SRF cavities (2K - nominal operating temp)
- Eight individual helium vessels (stainless steel)
- Waveguide power couplers (double warm rf-windows)
- Cavity tuners
 - Cold scissor jack
 - Warm drive components
- Supply/Return cryogenic end-caps (two cooling circuits)
 - 2K primary & 50K shield
Cryomodule Scope & Key Technical Parameters

- **Scope:** Develop, Design, Fabricate, Install and Check-out 10 Cryomodules (5 new cryomodules per linac)

(Note: The following parameters are for each Cryomodule)

Voltage (Includes 10% reserve): \(\geq 108 \text{ MV} \)
- Corresponds to average cavity gradient of 19.2 MV/m (ensemble average in each linac)

Heat budget: (Interface with Cryogenics)
- 2 K \(\leq 300 \text{ W} \)
 - Corresponds to cavity Qo 7.2 E9 @ 19.2MV/m
- 50 K \(\leq 300 \text{ W} \)

Slot Length: 9.8 m
Tuner resolution: \(\leq 2 \text{ Hz} \)

Fundamental Power Coupler (FPC): 7.5/13 kW (Avg/Pk)
Cryomodule Length (Physical): \(\sim 8.5 \text{ m} \)
Procurement - Planning

• Industry to produce components (build to print)
 – Develop advanced procurement plan
 – Specifications, drawings, acceptance criteria, schedule
 – Bid/Award process
 • Stock components
 • Low price technically acceptable
 • Best Value (consideration for experience)
 – Acceptance criterion
 – Delivery schedule
 – Production Schedule
Procurement - Execution

- **Manufacturing and Acceptance**
 - Criterion developed & defined prior to award
 - Vendor visits during production improves communication
 - First Article delivery schedule is critical
 - Validate production process before all components made

- QA/QC all components prior to release for use in cryomodule production
Procurement – Lessons Learned

• Strong Quality Assurance Pays off
 – Get early start on ‘non-standard’ components
 • Specifications & acceptance criteria must be well documented
 – Acceptance travelers, staff training, feedback to vendor
 • Issues with vendor performance must be communicated promptly
 – Manage resources
 • Resources must be in place prior to delivery of first article
 • Staffing: Availability, allocation, training, skill sets, etc.
 • Facilities: Process control, priority access, maintenance
 – Maintain Detailed Documentation
 • All procedures must be vetted prior to release
 • Establish robust QC; traveler system - (receiving inspections, process control, testing results, database management)
• Pre-production

 – Inventory management
 • Logistics:
 – Space, access, equipment, staffing
 – Scheduled mockup activities
 • Exercise tooling (ensure fit & function)
 • Work through assembly procedures
 • Identify/resolve any interference issues
 • Opportunity to vet assembly travelers
Production – Execution

- Production
 - Cavity qualification
 - Qualified in He vessel in VTA
 - 65% qualified on first test
 - Cavity string assembly
 - Assembly in cleanroom

C100 VTA tests for 12 GeV upgrade
Production – Execution

• Production (in-process quality checks)
 – Cold mass assembly
 • Mag shielding, Headers, tuners, instrumentation, MLI
 – Space frame assembly
 • Alignment, Thermal & Mag shielding, MLI
Production – Acceptance Testing

• Production
 – Final assembly
 • Complete warm checkout of all subsystems.
 – Acceptance testing
 • Cryomodule is slow cooled down to 4K (pumped down 2K)
 – Instrumentation checkout
 • Low power measurements
 – Tuner operation, cavity frequencies, HOM damping, heater control
 • High power measurements
 – Emax, Qo, Heat loads, Lorentz
Production – Lessons Learned

• Have Focused Response to ‘unplanned’ Issues
 – High permeability in He vessel heads
 • Spuncast head manufacturer added carbon steel to process
 – Manufacturer contacted; new (C-free) process implemented
 – Replacement heads manufactured from 316 SS
 – Cryogenic electrical feed-through (F-T) leaks
 • Failed after QA acceptance testing
 – Replaced: Based on previous experience, F-T’s located behind access panels.
 – Microphonic response higher than planned
 • Cold tuner modified to add stiffness to system.
 – Individual cavity heater control needed for operations
 • LLRF controls modified to accommodate
 – Based on previous experience, individual heaters installed
Installation / Checkout & Commissioning - Planning

• Coordination (with other 12 GeV upgrade activities)
 – Civil, beam transport, cryogenics, high power-rf, instrumentation, controls & safety
 • Integrate detailed schedule of activities including resources and interdependencies

• Goal – Install two cryomodules into CEBAF ahead of baseline schedule
 – Opportunity to operate cryomodules with beam and demonstrate performance goals.
 • Close coordination with physics program to integrate new digital LLRF control system designed for C100 cryomodules.
• Following acceptance testing
 – Cryomodule transported from Test Lab to CEBAF tunnel
 – Installation into designated zone
 • Complete integration with all other accelerator systems
 • Beamline, cryogenics, high-power-rf & rf control & safety systems
Full Performance of C100 & RF Demonstrated

C100 Cryomodule Energy Gain – May 18th

Beam Current 465 μA

Cryomodule voltage

Beam Current /g80

Energy gain (MeV)

TIME (in 20 minute increments)
Design goals

- **98 MV/CM**
 - Required for 12 GeV operations

- **108 MV/CM design goal**
 - Provide operational margin

- **19.2 MV/m/cavity**
 - Avg $E_{\text{max}} = 22.2 \text{ MV/m}$

- **Qo $\geq 7.2 \times 10^9$ @ 19.2 MV/m**
 - Avg Qo = 8.1×10^9

<table>
<thead>
<tr>
<th>Tunnel Performance (MV)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C100-01</td>
<td>104</td>
</tr>
<tr>
<td>C100-02</td>
<td>110</td>
</tr>
<tr>
<td>C100-03</td>
<td>118</td>
</tr>
<tr>
<td>C100-04</td>
<td>106</td>
</tr>
<tr>
<td>C100-05</td>
<td>110</td>
</tr>
<tr>
<td>C100-06</td>
<td>108</td>
</tr>
<tr>
<td>C100-07</td>
<td>108</td>
</tr>
<tr>
<td>C100-08</td>
<td>In progress</td>
</tr>
<tr>
<td>C100-09</td>
<td>114</td>
</tr>
<tr>
<td>C100-10</td>
<td>110</td>
</tr>
</tbody>
</table>
• Good communication & cross functional coordination is critical to success
 – Baseline design performance goal achieved
 – Design goal of 10% margin not achieved on all cryomodules
 • These activities are still in progress
 – Preliminary lessons learned
 » Improvements made to process/configuration control
 » Upgrades to testing hardware & software beneficial
Cost & Schedule – Planning

- C100 CM’s ~10% of total project cost

- Earned Value Management System (EVMS)
 - Formal EVMS implemented for 12 GeV project in accordance with DOE Order 413.3B
Cost & Schedule – Monitoring & Control

Total C100 Cost Breakdown

- 33% Procurements
- 18% Expenses
- 49% Labor

Labor Breakdown by Process

- 21% Tooling Design
- 26% Cavity QA & Qualification
- 33% QA processes (cavities not included)
- 8% Cryomodule Assembly
- 5% Acceptance Testing
- 8% Installation & Commissioning

• EVMS data
 - Procurements were the dominate cost for the C100 CM’s
 - Labor costs dominated by QA, cavity processing & cryomodule assembly
Cost & Schedule – Monitoring & Control

• EVMS – ‘Touch labor’
 – Quality Control
 • Component receiving inspections
 – Several hundred individual component inspections
 • Documentation (travelers, database management, etc.)
 • Inventory control
 – 1000’s of parts inventoried, tracked & released for production
 – Cavity QA & qualification
 • Cavity receiving inspection, chemical cleaning, testing and assembly
 – Cryomodule assembly
 • Cold mass, space frame & final assembly
Cost & Schedule – Lessons Learned

• Cost
 – Procurement
 • Work with vendors to identify cost drivers and minimize NRE & schedule delays
 • Take advantage of quantity discounts were possible
 • Minimize custom components/maximize common parts
 – Labor
 • QA: Develop capable vendors prior to request for quotes
 • Processing & Assembly:
 – Automate processes and redundancy
 – Minimize touch labor

• Schedule
 – Good communication critical
 • With vendors, safety, facility and technical and PM staff
Summary

• Planning
 – Prototyping
 • Develop/finalize component specifications & acceptance criteria
 • Identify/resolve any potential performance issues
 • Thoroughly vet processes, procedures, tooling and staffing needs
 • Develop sound basis for full production planning

• Execution, Monitoring and Controlling
 – Utilize formal database management
 • Receiving inspections, assembly travelers, cost & schedule
 • Establish baseline, monitor progress & promptly identify cost issues
 – Work the plan
 • Communicate progress to all stakeholders on a regular basis
Acknowledgements

• Andrew Burrill et al., “Production and Testing Experience with the SRF Cavities for the CEBAF 12 GeV Upgrade,” IPAC2011, San Sebastian, Spain, September 2011, MOOCA01

• Leigh Harwood, “The JLab 12 GeV energy Upgrade of CEBAF”, NA-PAC13, Pasadena, CA MOZAA1

• V. Ganni et al, “Commissioning of Helium Refrigeration System at JLab for 12 GeV Upgrade”, CEC-ICMC 2013, Anchorage, AK

• Andrew Burrill et al., “SRF Cavity Performance Overview for the 12 GeV Upgrade,” IPAC 2012, New Orleans, LA., WEPPC089

• Michael Drury et al., “CEBAF Upgrade: Cryomodule Performance and Lessons Learned,” SRF 2013, Paris, France, THIOB01