J. Corlett and M. Venturini, LBNL
for the NGLS R&D and Design Collaboration
NA-PAC 13, October 2, 2013
A concept design driven by X-ray science needs

Science requirements
- Soft X-ray probes
- High average brightness
- Moderate peak-power
- Ultrafast pulses, coherence

NGLS R&D work geared toward a design of a 4th generation FEL-based Light Source:
- Soft X-rays
- Ultrafast
- Coherence
- 2-color (X-ray pump-probe, non-linear spectroscopy)
- High repetition rate (SC CW Linac)
A high average power X-ray laser facility with high rep-rate CW beam and flexible pulse format

Intense coherent pulses at high rep rate – high average coherent X-ray power

Today’s X-ray laser sources

Intense coherent pulses at low rep rate

Today’s storage ring sources

Weak coherent pulses at high rep rate
Layout and radiation characteristics

High repetition rate soft X-ray laser array
- Up to 10^6 pulses per second
- Average coherent power up to ~ 100 W

Spatially and temporally coherent X-rays (seeded)
- Ultrashort pulses from ~ 1 fs to ~ 300 fs
- Narrow energy bandwidth to 50 meV

Tunable X-rays
- Adjustable photon energy from 100 eV – 1.25 keV, 2 keV achievable [baseline, 2.4 GeV]
- Moderate to high flux with $10^{10} – 10^{12}$ photons/pulse

Expandable
- Capability (e.g. higher photon energy, higher repetition rate)
- Capacity (multiple FEL beamlines)
Linac layout

- **“APEX” injector**
- **TESLA/ILC SC structure technology**

 (modified for NGLS)
- One or two-stage compression
- “Dechirper”
- RF deflector-based beam spreader
- 3 initial seeded / self-seeded FELs

- **300 pC bunches**
- **1 MHz bunch rate**
- \(\gamma \varepsilon_\perp = 0.6 \mu m \)
- \(I_{pk} = 500 \ A \)
- \(\sigma_E = 150 \ \text{keV} \)
- **Final useable bunch 300 fs**
Linac beam dynamics

- **S2E modeling using** ASTRA, ELEGANT, IMPACT, GENESIS, GINGER

- **Special attention to minimization of** microbunching instability, CSR-induced emittance growth

- **Electron beam meets requirements for FEL**
Cryomodule concept

- TESLA/ILC (1.3 GHz) technology modified for CW operation in NGLS
- Use existing expertise, designs, infrastructure, industrialization
 - Discrete cryomodules each with cold/warm end transitions
 - Magnets, diagnostics & HOM absorbers in warm sections
 - Distribute 5 K liquid, cool to 1.8 K at cryomodule
- **E ~14-16 MV/m**
- **Q₀ = 2x10¹⁰**
- **Heat load @ 1.8K**
 - ~12 W / cavity
 - 90–130 W / cryomodule
CW superconducting linac + high bunch rate + fast feedback = highly stable beams

- Goal of stability similar to existing storage rings
- CW measurements allow broadband feedback to control residual jitter

- $\frac{\Delta E}{E} \approx 10^{-5}$
- $\Delta \tau < 10$ fs
- $\frac{\Delta x_{rms}}{\sigma_x} < 5\%$
Beam spreader

- RF deflecting cavity and magnetic lattice distributes bunches to FEL beamlines
 - *Flexible time structure*

from linac

Lambertson septa 38mrad

RF Dipole 3 MeV / 1.15mrad

FEL 1

FEL2

FEL3

Dipole magnet

RF deflecting cavity and magnetic lattice distributes bunches to FEL beamlines.

- *Flexible time structure*
Three concepts developed for the initial X-ray FELs

Self-seeded

- SASE radiator
- Chicane
- Self-seeded radiator

Trade-off: time/energy resolution

- ≥1 μs
- ~30–300 fs

MHz pulse repetition rate
High power ~100 W

2-stage HGHG

- Seed laser
- Chicane
- Radiator-1
- Modulator-1
- Radiator-2
- Modulator-2

Trade-off: time/energy resolution

- ~5 – 50 fs
- ≤100 fs (+ X-ray delay)
- ~1 – 5 fs

Chirped-pulse / tapered SASE

- Seed laser
- Chicane
- Modulator-1
- SASE radiator 1
- Seed laser
- Modulator-2
- SASE radiator 2

Trade-off: time/energy resolution

- ≤100 fs (± X-ray delay)
- ~1 – 5 fs

fs pulse capability
2 color X-ray pulses
“Pulse on demand”

- Photodiodes measure timing and predict the path of droplet from dispenser
- The photocathode laser is then triggered to provide pulse coincident with droplet arrival at the FEL focus

Droplet dispenser

\[\Delta t \approx 10 \text{ ms} \]

\[\Delta t \approx 100 \text{ ns} \]
NGLS technical challenges

Challenges mostly in handling high rep-rate and high average power
Advanced Photoinjector Experiment (APEX): Demonstrate MHz high-brightness electron source

Beam characterization at gun energy (750 keV):
Tests started

Beam characterization at 15–30 MeV
6-D brightness measurements:
Beam tests planned to start Sept. 2014

186 MHz CW copper cavity photo-gun: Commissioned

1.3 GHz copper accelerating cavities (pulsed), diagnostics systems

Emittance compensation solenoids, buncher cavity

186 MHz CW RF photocathode gun
APEX on track, gun technology demonstrated

- Gun operating at full RF power
 - 120 kW
- Dark current characterized
 - ~1 nA close to exit of gun
- Excellent vacuum demonstrated
 - 8×10^{-10} Torr with RF on

- Photo-emitted electron beam energy demonstrated (750 keV)
- MHz photoemission from high-QE cathode demonstrated
 - Cs_2Te, 1 W Yb-fiber laser

- Good lifetime in initial measurements
 - 10%–>4% after 40 C extracted
Undulator technology and R&D

Nb$_3$Sn prototype
20 mm period, 7.5 mm gap, 50 cm length

Hybrid-Permanent-Magnet
(g$_m$ = 7.5 mm)

APS SCU0
(g$_m$ = 9.5 mm)

LCLS
(g$_m$ = 6.8 mm)

Hybrid-Permanent-Magnet
(g$_m$ = 7.5 mm)
Soft X-Ray Self-Seeding (SXRSS)

Vacuum pump (1 of 2)
M2 & M3-mirror vessel
Isolation valve (1 of 2)
Control motors (1 of 9)
Chicane dipole magnet (1 of 4)
Grating & M1-mirror vessel

Existing undulator girder, ~4 m

Hardware installation under way at LCLS
Plans for initial experiments this year

Slit
Soft X-Ray Self-Seeding (SXRSS)

Existing undulator girder, ~4 m

beam direction

QU08 (existing quad)
Grating (toroidal VLS)
B1 (+0.8°)
B2 (~0.8°)
B3 (~0.8°)
M3 (plane mirror)
B4 (+0.8°)

QU09 (existing quad)

M1 (rotating planar mirror)

M2 (tangential cylindrical mirror)

\(\Delta t = (\sim 660\ \text{fs}) \)
The NGLS collaboration has developed a science-driven design concept for a future FEL facility

• Multi-beamline soft X-ray laser array
• Powered by a high-stability CW superconducting linac
• High repetition rate (MHz) and uniform time structure

Provide missing capabilities in X-ray science, (needed e.g. to observe and control function of materials)

✓ Soft X-rays
✓ Ultrafast
✓ Full coherence
✓ 2-color (X-ray pump-probe)
✓ High repetition rate

The NGLS design effort has now come to an end.

• We hope that many of the ideas developed will find good use in the next FEL light source to be built in the USA
NGLS R&D, design collaboration

*Now at SLAC. **Visiting from ANL.

Camille Ginsburg, Robert Kephart, Arkadiy Klebaner, Thomas Peterson, Alexander Sukhanov

Dana Arenius, George Neil, Tom Powers, Joe Preble

Chris Adolphsen, Karl Bane, Yuantao Ding, Zhirong Huang, Chris Nantista, Cho-Kuen Ng, Heinz-Dieter Nuhn, Claudio Rivetta, Gennady Stupakov

*Now at SLAC. **Visiting from ANL.