Orientation

NA-PAC’13 will take place in two buildings. The Convention Center has the industrial exhibition hall/poster sessions and the Ballroom, where the oral presentations occur. In its foyer is the Registration Desk.

The nearby Conference Building offers business and support functions of the conference (except registration). On its street level you will find Author Reception, a Speaker Preparation Room, and a place to sit with your laptop to work on your Proceedings manuscript and connect to the Internet.
Contents Section I

Sponsors & Supporters .. iv
Welcome from the NA-PAC’13 Chair v
Welcome from the NA-PAC’13 SPC Chair vi
Conference Committees .. vii
 Organizing Committee vii
 Scientific Program Coordination Committee ... vii
 Scientific Program Committee viii
Local Organizing Committee xi
Awards .. xiii
 Student Grant Awardees xiii
 NA-PAC’13 Student Poster Award xiii
 IEEE/NPSS Particle Accelerator Science and Technology Awards xiv
U.S. Particle Accelerator School Prizes for
Achievement in Accelerator Physics and Technology .. xv
Social Events .. xvi
Registration & Miscellaneous xvi
Scientific Program ... xix
 Oral Sessions .. xix
 Poster Sessions .. xx
 Student Poster Session xxii
Proceedings .. xxiii
NA-PAC’13 Industry Exhibition & Exhibitors xxiv
Venue Maps .. xxviii
Notes Page .. xxx

Contents Section II

Scientific Program Contributions 1
Notes Page .. 117
Synoptic Table .. Cover Foldout
Sponsors & Supporters

We would like to acknowledge and thank the following for their sponsorship and support.

SPONSORS

American Physical Society
Division of Physics of Beams

Institute of Electrical and Electronics Engineers
Nuclear and Plasma Sciences Society

Dimtel, Inc.

SUPPORTERS

Lawrence Berkeley National Laboratory

SLAC National Accelerator Laboratory

University of California, Los Angeles

US Department of Energy, Office of Science
Offices of Basic Energy Sciences, Fusion Energy Science, High Energy Physics, and Nuclear Physics
Welcome from the NA-PAC’13 Chair

We welcome you to Pasadena, California, for the North American Particle Accelerator Conference. Held from September 30 through October 4 at the Pasadena Convention Center, NA-PAC’13 will bring together scientists, engineers, students, and industrial exhibitors, representing all aspects of accelerators and particle beams, for an information-sharing experience focused on technology. This conference is the 25th in the series of Particle Accelerator Conferences and the second regional North American PAC.

The conference is organized jointly by the Lawrence Berkeley National Laboratory (LBNL), the SLAC National Accelerator Laboratory (SLAC), and the University of California Los Angeles (UCLA), and sponsored by the IEEE Nuclear and Plasma Sciences Society and the APS Division of Physics of Beams.

The Scientific Program Committee has created a diverse and exciting program covering the latest topics in the field of accelerator science and technology. It is geared toward early career scientists, engineers and students but will retain the historic international flavor with invited speakers from around the world. The program begins on Sunday with a student poster session and we will continue the tradition of offering a number of tutorials on the latest hot topics.

Accelerators involve not just science and technology but a community of friends old and new, and the social program is an important aspect of these conferences. A Companion Orientation is scheduled for Monday. Everyone is invited to a Women in Engineering Networking Event on Wednesday evening. Finally, the Conference Banquet on Thursday evening is designed to facilitate networking and interaction with colleagues—you won’t want to miss it!

We are very fortunate to have secured Pasadena for the venue. Pasadena is embedded in a large urban setting but has a small town feel. It is a pedestrian-friendly town with excellent restaurants and access to the many attractions of the Los Angeles metropolitan area. It won’t be difficult finding things to do before, during and after the conference.

On behalf of myself and the NA-PAC’13 Organizing Committee, welcome to Pasadena!

Steve Gourlay
Chair, NA-PAC’13

North American PAC 2013
Introduction

Welcome from the NA-PAC’13 SPC Chair

Our community has made important advances and achieved much in recent years in many areas on many fronts. The scientific program of NA-PAC’13 is designed foremost to reflect this progress. While making this progress, our community has also been evolving rapidly in terms of demography, emphasis, and admittedly also available resources. These considerations were also taken into account as much as possible in developing the scientific program.

The Scientific Program Committee has accordingly put together a rich program consisting of 126 oral and 500 poster presentations. I hope you will find this program informative, rewarding and enjoyable.

One of the realizations over the past years has been the increasing importance to our community of accelerator applications. We have continued the effort this year to emphasize applications. We introduced two sets of dedicated sessions, on Medical and Industrial Applications of Accelerators, with authoritative presentations. We encourage you to participate in these new sessions.

Following the success of Tutorials at NA-PAC’11, we also have early morning Tutorials in four parallel sessions. Students and experts alike are welcome to enjoy these tutorials.

Posters are an efficient way to carry out in-depth communication. They play a critical part of our conference. They are designed as stand-alone sessions without overlap with oral sessions to encourage your maximum attendance and participation. We also have an Award session during which great achievers of our community will be recognized.

Representing the Scientific Program Committee, I warmly welcome you to the conference!

Alex Chao
Chair, Scientific Program Committee
Conference Committees

Organizing Committee

Stephen Gourlay, Chair
LBNL
Joseph Bisognano, UW-Madison/SRC
John R. Cary, CIPS
Alex Chao, SLAC
Yu-Juian Chen, LLNL
John Erickson, LANL
Stuart Henderson, FNAL
Robert Hettel, SLAC
Georg H. Hoffstaetter, Cornell University [CLASSE]
Andrew Hutton, Jefferson Lab
Kevin Jones, ORNL
Chan Joshi, UCLA
Lin Liu, LNLS
Lia Merminga, TRIUMF
Thomas Roser, BNL
Stan Owen Schriber, SOS
Vladimir Shiltsev, FNAL
Bruce Paul Strauss, DOE
Victor Paul Suller, LSU/CAMD
David Sutter, UMD
Alan Murray Melville Todd, AES
Jie Wei, FRIB
Marion White, ANL
Robert Miles Zwaska, FNAL

Scientific Program Coordination Committee

Alex Chao, Chair
SLAC
Riccardo Bartolini, Diamond
Oliver Boine-Frankenheim, GSI and TU Darmstadt
Mark Boland, ASCo
Sotirios Charisopoulos, IAEA, Vienna
John Corlett, LBNL
Hartmut Eickhoff, GSI
Robert Hamm, R&M Technical Enterprises
Stuart Henderson, FNAL
Mark Hogan, SLAC
Valeri Lebedev, FNAL
Patric Müggl, MPI
Katsunobu Oide, KEK
Peter Ostroumov, ANL

North American PAC 2013
Conference Committees

Christine Petit-Jean-Genaz CERN
Søren Prestemon LBNL
Dave Robin LBNL
Todd Satogata Jefferson Lab
Jingyu Tang IHEP Beijing
Akira Yamamoto KEK
Yoshihige Yamazaki MSU

Scientific Program Committee

Alex Chao SLAC
Chair

Chris Adolphsen SLAC
Kazunori Akai KEK
Alexander Aleksandrov ORNL
Jose Alonso LBNL
Gerard Andonian UCLA
Giorgio Apollinari FNAL
Rick Baartman TRIUMF
Riccardo Bartolini Diamond
Christoph Bert GSI
Jean-Luc Biarrotte IPN
Mike Blaskiewicz BNL
Oliver Boine-Frankenheim GSI and TU Darmstadt
Mark Boland ASCo
Michael Borland ANL
Lucas Brouwer UC Berkeley
David Bruhwiler RadiaSoft LLC
John Byrd LBNL
Alok Chakrabarti VECC
Andrzej Chmielewski Inst. Nucl. Chem. & Tech.
Sotirios Charisopoulos IAEA
Eric Colby OHEP/DOE
Phil Cole ISU
Manoel Conde ANL
Jeff Corbett SLAC
John Corlett LBNL
Marie-Emanuelle Couprie CEA
Sarah Cousineau ORNL
Bob Dalesio BNL
Winfried Decking DESY
Jean-Pierre Delahaye CERN on leave at SLAC
Mike Downer U.T. Austin
Hartmut Eickhoff GSI
Eckhard Elsen DESY
Phil Ferguson ORNL
Conference Committees

Wolfram Fischer BNL
Jay Flanz Massachusetts General Hospital
John Fox SLAC
Arne Freyberger Jefferson Lab
Robert Garnett LANL
John Galambos ORNL
Thomas Haberer Heidelberg Ion Therapy Ctr.
Robert Hamm R&M Technical Enterprises
Bumsoo Han EB Tech Co. Ltd.
Michael Harrison BNL
Stuart Henderson FNAL
Georg Hoffstaetter Cornell University (CLASSE)
Mark Hogan SLAC
Takahiro Inagaki RIKEN
Carol Johnstone FNAL
Michael Kelley College of William and Mary
Vince Kempson Diamond
Robert Kephart FNAL
Shane Koscielniak TRIUMF
Tadashi Koseki J-PARC
Thomas Kroc FNAL
Richard Lanza MIT
Valeri Lebedev FNAL
S.Y. Lee Indiana University
Simon Leemann MAX-Lab
Matthaeus Leitner FRIB, MSU
Evgeni Levichev BINP
Ute Linz FZJ
Derek Lowenstein BNL
Mika Masuzawa Ibaraki University
Lia Merminga TRIUMF
Michiko Minty BNL
Nikolai Mokhov FNAL
Francoise Muehlhauser IAEA
Patric Mueggi MPI
Sergei Nagaitsev FNAL
George Neil Jefferson Lab
Koji Noda NIRS
Greg Norton NEC
Heinz-Dieter Nuhn SLAC
Kazuhito Ohmi KEK
Katsunobu Oide KEK
Peter Ostroumov ANL
Mark Palmer FNAL
Steve Peggs BNL/ESS
Michael Peiniger Research Instruments

North American PAC 2013 ix
Conference Committees

Dmitry Pestrikov BINP
Thomas Peterson FNAL
Christine Petit-Jean-Genaz CERN
Fulvia Pilat Jefferson Lab
Nathaniel Pogue Texas A&M University
Eric Prebys FNAL
Søren Prestemon LBNL
Christopher Prior STFC/RAL/ASTeC
Qing Qin IHEP Beijing
Pantaleo Raimondi INFN/LNF
Tor Raubenheimer SLAC
Dave Robin LBNL
Thomas Roser BNL
Dave Rubin Cornell University
Lawrence Rybarcyk LANL
GianLuca Sabbi LBNL
James Safranek SLAC
Kenji Saito FRIB
Fernando Sannibale LBNL
Todd Satogata Jefferson Lab
Carl Schroeder LBNL
Timur Shaftan BNL
Vladimir Shiltsev FNAL
Luis Silva IST Portugal
Markus Steck GSI
Gennady Stupakov SLAC
Hitoshi Tanaka RIKEN
Chuanxiang Tang Tsinghua University
Jingyu Tang IHEP Beijing
John Thomason STFC/RAL
Alan Todd AES
Grigoriy Trubnikov JINR
Alexander Valishev FNAL
Nikolai Vinokurov BINP
Will Waldron LBNL
Dong Wang SINAP
Jiawen Xia IMPCAS
Gang Xu IHEP, Beijing
Vitaly Yakimenko SLAC
Akira Yamamoto KEK
Yoshihige Yamazaki MSU
X.Q. Yan Peking University IHP
Masahiro Yoshimoto JAEA
Peter Zavodszyk GE Global Research
Stefan Zeisler TRIUMF
Yuhong Zhang Jefferson Lab
Conference Committees

Local Organizing Committee

Chan Joshi
Chair
UC Los Angeles

Sandra Biedron
Colorado State University

Alex Chao
SLAC

Joe Chew
LBNL

Tom Gallant
LBNL

Jan Hennessey
LBNL

Marcos Ruelas
RadiaBeam Technologies

Christine Petit-Jean-Genaz
CERN

Todd Satogata
Jefferson Lab

Sam Vanecek
LBNL

Centennial Conferences
Conference Management
Contributed by more than 200 experienced experts from across the spectrum of accelerator related institutions:

- SLAC National Accelerator Laboratory
- CERN
- Cornell Laboratory for Accelerator-based Sciences and Education
- Fermilab
- TRIUMF
- and more

Contains more than

- ➤ 100 NEW articles
- ➤ 300 illustrations
- ➤ 2000 equations
- ➤ 500 graphs / tables

Comprehensive review of superconducting technology and its applications to accelerators, including superconductivity magnets (SC magnets) and superconducting radio-frequency (SRF) cavities

Written by leading scientists in their respective fields from:

- CERN
- BNL
- LBNL
- Jefferson Lab
- KEK
- and more

“Many other physicists will be interested in learning – in detail – of the many applications of this branch of physics, and this book is a fine source of just such information. In addition, scientists – typically not physicists – that are interested in a particular application will want to read the relevant sections of this book. In short, I believe the book should have a wide range of interested readers, and it comes well-recommended.”

Andrew M. Sessler
Lawrence Berkeley National Laboratory, University of California

Readership: Physicists, engineers and practitioners in accelerator science and industry.
Awards

Student Travel Grant Awardees

Afnan Al Marzouk
Northern Illinois University

Simon Albright
University of Huddersfield

Mahmoud Ali
Jefferson Lab

Anthony Andrews
IAC

Sergey Arsenyev
MIT/PSFC

Taras Bondarenko
MEPhI

Alejandro Castilla
ODU

David Cesar
UCLA

Nathan Cook
Stony Brook University

Alexandra Day
Wellesley College

Yann Dutheil
BNL

Christopher Eckman
IAC

Jonathan Edelen
CSU

Steve Full
Cornell University (CLASSE)

Bamunuvita R. Gamage
ODU

Colwyn Gulliford
Cornell University (CLASSE)

Christopher Hopper
ODU

Siddharth Karkare
Cornell University

Nermeen Khalil
SBU

Xue Liang
BNL

Yosuke Matsumura
University of Tokyo

Harsha Panuganti
Northern Illinois University

Sam Posen
Cornell University (CLASSE)

Blake Riddick
UMD

Aakash Sahai
Duke ECE

Herman Schaumburg
Northern Illinois University

Ki Shin
ORNL RAD

Nihan Sipahi
CSU

William Stem
UMD

Ozhan Turgut
Stanford University

Alysson Vrieland
TRIUMF

Joel Williams
CSU

Eric Wisniewski
ANL

Tianmu Xin
BNL

Hao Zhang
UMD

Zhihong Zheng
FRIB

Timofey Zolkin
University of Chicago

The NA-PAC’13 Student Poster Award

Two prizes in the amount of $500 each for the best student posters will be awarded for particularly meritorious work, selected by members of the Scientific Program Committee (SPC) during the special poster session for students on Sunday, September 29. The prizes and certificates will be presented during the Accelerator Prizes Session on Thursday, October 3.
Awards

IEEE/NPSS Particle Accelerator Science and Technology Awards

The IEEE Nuclear and Plasma Sciences Society confers the Particle Accelerator Science and Technology Award upon individuals who have made outstanding contributions to the development of particle accelerator science and technology. Two Awards are granted in each occurrence of the Particle Accelerator Conferences held in North America (NA-PAC or IPAC).

The 2013 awardees are:

Alexander J. Dragt, Professor Emeritus, Department of Physics, University of Maryland College Park, "for substantial contributions to the analysis of non-linear phenomena in accelerator beam optics by introducing and developing map-based approaches."

Mark Hogan, Plasma Group Leader and Head of the Advanced Accelerator Research Department at SLAC National Accelerator Laboratory, "for leadership and scientific contributions in forging an unprecedented partnership between plasma-based and conventional particle accelerator science and technology."

The Particle Accelerator Science and Technology Doctoral Student Award recognizes outstanding thesis research in particle accelerator science and technology.

Anna Grassellino of Fermi National Accelerator Laboratory receives the Particle Accelerator Science and Technology Doctoral Student Award "for contributions to the fundamental understanding of the field dependent loss mechanisms in SRF cavities".
Awards

U.S. Particle Accelerator School Prizes for Achievement in Accelerator Physics and Technology

Two USPAS Prizes for Achievement in Accelerator Physics and Technology are awarded every other year, one of them to a scientist under 45 years of age. They recognize outstanding achievements over the full range of accelerator physics and technology. The prizes are awarded on a competitive basis without bias to race, sex, and/or nationality. The 2013 honorees are Kwang-Je Kim of ANL and Jean-Luc Vay of LBNL. This year a special Lifetime Achievement Award goes to Indiana University's S.Y. Lee.

Kwang-Je Kim of Argonne National Laboratory is honored "for a life-time of leadership in beam physics and for significant theoretical contributions improving our understanding of photocathode electron guns, synchrotron radiation and free-electron lasers, and for his work educating young scientists."

Jean-Luc Vay of Lawrence Berkeley National Laboratory is recognized "for original contributions to the development of novel methods for simulating particle beams, particularly the Lorentz boosted frame techniques, and for the successful application of these methods to multi-scale, multi-species problems."

S. Y. Lee of Indiana University will be given the USPAS Prize for Lifetime Achievement in Accelerator Physics and Technology "for his extraordinary contributions to accelerator education including mentoring a large cadre of highly-regarded students, for overseeing the Indiana University - USPAS Master's Degree Program in Accelerator Physics and for serving as USPAS Director from 1998 to 2002."
Social Events

Welcome Reception
Sunday, September 29, 2013
18:00 – 20:00
North Ballroom Foyer, Convention Center

Companion Orientation
Monday, September 30, 2013
09:30 – 10:30
San Diego Room, Hilton Pasadena

Join NA-PAC’13 companions for a light breakfast and conversation. The Hilton Concierge will provide information about sightseeing, shopping and restaurants in Pasadena.

Women in Engineering Event
Wednesday, October 2, 2013
18:00 -20:00
Ballroom A, Convention Center

All conference attendees are invited to join the Women in Engineering networking mixer. Enjoy a cocktail and appetizers as you meet with fellow NA-PAC’13 attendees. Get your business cards ready and join us for an interactive evening to Grow Your Network and enter for raffle prizes!

Conference Banquet
Thursday, October 3, 2013
20:00 – 22:00
Ballroom DE, Convention Center

This year, the NA-PAC banquet will not be a seated dinner. The evening will feature Southern California food stations, casual seating to facilitate networking and conversation, and live music to set the mood.
Registration & Miscellaneous

Registration

All participants MUST have a badge for entry to all technical sessions, exhibits, and social events.

Registration is located outside the Exhibit Hall in the Convention Center. Hours are as follows:

- Sunday, 9/29: 14:00 – 20:00
- Monday, 9/30: 07:00 – 18:00
- Tuesday, 10/01: 07:30 – 18:00
- Wednesday, 10/02: 07:30 – 18:00
- Thursday, 10/03: 07:30 – 18:00
- Friday, 10/04: 07:30 – 12:00

Internet

Wireless internet is available in public areas. Login details will be provided at registration.

Internet Café (self-service)

A self-service Internet Café will be available in room 204 of the Conference Building. A flat surface, power outlets, and internet connection will be provided as long as you bring a laptop. Instructions will be provided for connecting to the internet and to a local printer for small print jobs.

Business Center

A small Business Center will be available in room 205 for those few who do not travel with a laptop. This room will have a few computers set up for very minor print jobs relating to conference business (copyright forms, boarding passes, etc...)

Hours of operation are as follows:

- Sunday, 9/29: 14:00 – 18:00
- Monday, 9/30: 08:00 – 18:00
- Tuesday, 10/01: 08:00 – 18:00
- Wednesday, 10/02: 08:00 – 18:00
- Thursday, 10/03: 08:00 – 18:00
- Friday, 10/04: 08:00 – 13:00
Registration & Miscellaneous

Message Boards

Useful information and daily updates can be found in the registration area.

- **Special Announcements & General Message Board:** Information, special announcements as well as program updates will be posted and participants can post or receive messages here.

- **Job Postings and Resume Board:** Participants should post to this board as appropriate.

Satellite Meetings

Organizers of satellite meetings are welcome to post information on the Message Boards and also to submit it for the conference website.

If you are interested in securing space to hold a meeting while attending NA-PAC’13 or to publicize a meeting, please see the staff at the Conference Registration Desk for assistance.
Scientific Program

Oral Sessions
The plenary sessions will take place in Ballroom DE (“Auditorium A”) of the Convention Center Monday morning, September 30, before the coffee break and Friday afternoon, October 4, after the lunch break. The Award Session takes place Thursday afternoon, October 3, and will be held in Ballroom DE (“Auditorium A”). All other oral sessions will take place in two parallel sessions in Ballroom DE (“Auditorium A”) and Ballroom BC (“Auditorium B”).

Visual Aids
Oral presentations will be made using the computers and projection equipment provided. Individual laptops cannot be accommodated.

Guidelines for speakers are published at the conference website. All presentations must be uploaded via SPMS half a day in advance of the presentation.

Speaker Preparation Room
A speaker preparation room is available for speakers in room 212/214 at the Conference Building. This is an area where speakers should preview/test their presentations. Please upload to SPMS at least a day in advance of your scheduled presentation.

Hours of operation are as follows:

<table>
<thead>
<tr>
<th>Day</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, 9/29</td>
<td>14:00 – 18:00</td>
</tr>
<tr>
<td>Monday, 9/30</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Tuesday, 10/01</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Wednesday, 10/02</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Thursday, 10/03</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Friday, 10/04</td>
<td>08:00 – 13:00</td>
</tr>
</tbody>
</table>
Identification of Contributions

All contributions to the scientific program have a code whereby:

- the first two letters correspond to the day of presentation, Monday, Tuesday, Wednesday, etc. (i.e. MO, TU, WE, etc.),

- the third letter indicates the type of presentation: X, Y and Z (or XA, XB etc.,) are invited oral presentations, O (or OA, OB, OC, OD) indicate contributed oral presentations, and P is for poster presentations,

- the fourth letter indicates the location for orals in parallel sessions (A for Auditorium A (Ballroom DE) and B for Auditorium B (Ballroom BC), AC, BA, HO, MA and SM are the poster session areas named for Angeles Crest, Bel Air, Hollywood, Malibu and Santa Monica,

- the program code finishes with 1 digit for oral presentations and two digits for poster presentations, corresponding to the poster panel number.

Poster Sessions

Poster Sessions will take place each afternoon from Monday to Thursday, September 30 – October 3 from 16:30 to 18:00 in the Exhibit Hall at the Convention Center. The poster sessions are de-coupled from the oral sessions to enable all delegates to participate fully in the conference program.

Poster sessions are a focal point of the conference. To make the sessions as attractive, successful and rewarding as possible, authors of posters are strongly encouraged to take particular care in their preparation.

Authors are reminded that no contributions are accepted for publication only. Any paper accepted for presentation, but which is not presented at the conference, will be excluded from the Proceedings.
Scientific Program

Placing a Proceedings manuscript (even if enlarged) on a poster board is not considered an acceptable poster, and if presented in this way, the paper will not be approved for publication in the Proceedings.

Posters should be mounted between 08:30 and 10:30 the day of the presentation, and must be attended from 16:30 to 18:00. Poster panels are 8 feet (2.4 meters) wide by 4 feet (1.2 meters) in height. Push pins will be provided for mounting of posters. Posters must be removed immediately after 18:00 or will be discarded.
Scientific Program

Poster Locations

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Poster Area Angeles Crest</td>
</tr>
<tr>
<td>BA</td>
<td>Poster Area Bel Air</td>
</tr>
<tr>
<td>HO</td>
<td>Poster Area Hollywood</td>
</tr>
<tr>
<td>MA</td>
<td>Poster Area Malibu</td>
</tr>
<tr>
<td>SM</td>
<td>Poster Area Santa Monica</td>
</tr>
</tbody>
</table>

Student Poster Session

A special student poster session will take place during delegate registration on Sunday, September 29, 2013. All students attending the conference have been encouraged to present their work in this session. All students attending the conference with a grant must present their work in this session, and must submit a contribution to the proceedings.

All work to be presented by students will be compiled into a special abstracts brochure. They will be assigned a poster panel, reserved for this session. NOTE: All student posters are also presented during the "normal" poster sessions.

Student posters must be mounted early in the afternoon, from 14:00 to 14:30. Students must be present to discuss their work between 14:30 and 18:00. The posters must remain in place until 20:00.

The NA-PAC’13 Scientific Program Committee will judge the posters competing for the Student Poster Awards also from 14:00.
Proceedings

The Conference Proceedings will be published at the JACoW website (http://www.jacow.org).

Contributed oral and poster presentations may be up to three pages long and invited papers up to five pages. To ensure consistency of the conference proceedings, all papers have to meet formal criteria, specified by JACoW.

Guidelines can be found at the conference website under For Authors, Proceedings Paper Preparation.

The paper submission deadline is Wednesday, September 25, 2013.

Copyright Forms

NA-PAC’13 is co-sponsored by the Institute of Electrical and Electronic Engineers, so you will have to fill out the customary IEEE copyright form and hand it in at the conference. Your JACoW SPMS account will have a link to the form. A copyright form MUST be turned in before a paper can be published.

Proceedings Office

Authors are requested to check on their papers via the status or “dot” board located near Author Reception and near the presentation and exhibit areas. Authors may also check on the status of their papers via SPMS at http://appora.fnal.gov/pls/pac13/edot.html.

Author Reception will be located in room 207 of the Conference Building where staff will be available to answer any questions.

Proceedings Office Hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, 9/30</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Tuesday, 10/01</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Wednesday, 10/02</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Thursday, 10/03</td>
<td>08:00 – 18:00</td>
</tr>
<tr>
<td>Friday, 10/04</td>
<td>08:00 – 13:00</td>
</tr>
</tbody>
</table>
Industry Exhibition

NA-PAC’13 Industry Exhibition

The NA-PAC’13 Industry Exhibition will take place in the Exhibit Hall of the Pasadena Convention Center.

Exhibition dates and times are:

- Monday, 9/30: 09:30 - 18:00
- Tuesday, 10/1: 09:30 - 18:00
- Wednesday, 10/2: 09:30 - 18:00
Industry Exhibition

Registered Exhibitors (A – Z)

2 – AccSys Technology, Inc.
29 – Advanced Energy Systems
50 – American Physical Society
22 – AWR Corporation
54 – Buckley Systems Ltd.
9 – CAEN
47 – Ceramic Magnetics
6 – CML Engineering
33 – Continental Electronics Corporation
10 – CPC
27 – CPI
60 – CST of America, Inc.
7 – Danfysik
58 – Dean Technology Inc.
24 – Dimtel, Inc.
Industry Exhibition

5 – Diversified Technologies, Inc.

56 – Euclid TechLabs, LLC

32 – Everson Tesla Inc.

37 – FAR-TECH, Inc.

11 – FRIATEC NA LLC

26 – GMW Associates

1 – High-Tech Manufacturing

23 – Instrumentation Technologies

49 – IOP Publishing

59 – Kepco Inc.

15 – L-3 Electron Devices

4 – Magnetic Metals Corp

30 – Mega Industries, LLC.

57 – Meyer Tool & Mfg., Inc.

38 – Micro Communication Inc

28 – Microwave Amplifiers Ltd.

13 – Muons, Inc.
Industry Exhibition

35 – National Instruments

52 – Pearson Electronics Inc.

14 – PHPK Technologies

21 – RadiaBeam Technologies

26 – RI Research Instruments GmbH

31 – SAES Group

53 – ScandiNova

48 – Sigmaphi Accelerator Technologies

51 – Stangenes Industries, Inc.

55 – Struck Innovative Systeme

8 – TDK-Lambda Americas

34 – THALES

36 – Tomco Technologies

3 – Toshiba Electron Tubes & Devices

61 – TREK, Inc.
Conference Venue

Conference Building and Convention Center

[Diagram of conference venue with labels for Conference Building, Civic Auditorium, Ballroom, Exhibition Hall A, Exhibition Hall B, and Ice Skating Rink.]
Conference Venue

Conference Building: Upper Level

Convention Center: Exhibit Hall & Ballroom

Exhibit Hall

Ballroom B/C

Auditorium B

Ballroom D/E

Auditorium A
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
<th>Chair</th>
</tr>
</thead>
</table>
| 30-Sep-13 | 09:00 – 09:30 | Oral Main Auditorium (Plenary) | **MOXAP — Plenary Invited Oral Presentation, Colliders**
Chair: S.A. Gourlay (LBNL) | **MOXAP1**
09:00
Review of the Possible Projects towards a Higgs Factory — S. Henderson (Fermilab)
Following Higgs discovery at CERN, several accelerator technologies from linear to circular colliders using various kinds of particles from leptons (electron, positrons, muons) or gammas or hadrons in LHC. The speaker should review the various proposals outlining the proscons of each technology as well as the corresponding challenges and issues to be addressed by specific R&D before a proposal can be realistically be proposed. The talk should also discuss Snowmass-2013 recommendations. |
| 30-Sep-13 | 09:30 – 10:00 | Oral Main Auditorium (Plenary) | **MOXBP — Plenary Invited Oral Presentation, Medical Accelerators and Applications**
Chair: S.A. Gourlay (LBNL) | **MOXBP1**
09:30
Demands and Perspectives of Hadron Therapy — A. Lin (University of Pennsylvania School of Medicine, Perelman Center for Advanced Medicine)
This presentation should cover the clinical and biophysical aspects of hadron therapy and according technological perspectives. A comparison should be made of the benefits for hadrons in treating various tumor sites as compared with x-rays. Benefits as defined by survival rate and side effects will be given. |
| 30-Sep-13 | 10:30 – 11:30 | Oral Auditorium A (Parallel) | **MOYAA — Invited Oral Presentations, Colliders**
Chair: D.F. Sutter (UMD) | **MOYAA1**
10:30
LHC Operation at Higher Energy and Luminosity — G. Papotti (CERN)
The Large Hadron Collider at CERN (Geneva) was commissioned and operated in the years 2009-2013 up to a beam energy of 4 TeV. A peak luminosity of $0.77 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$ was reached and an integrated luminosity of around 29 fb$^{-1}$ was delivered to both ATLAS and CMS. This performance allowed the discovery of a scalar boson. The LHC is presently in a shutdown phase dedicated to consolidation and maintenance that will allow the restart of beam operation in early 2015 at an increased beam energy of 6.5 to 7 TeV. Maximum acceptable pile-up, effectiveness of electron-cloud scrubbing, and fast loss events are some of the issues that will shape the choice of operational parameters, cycle setup, and the commissioning strategy. The baseline choices and options for the restart after the shutdown are presented. In addition the roadmap for future performance upgrades is sketched. |
| | | | **MOYAA2**
11:00
The R&D Program for a Future Muon Collider — M.A. Palmer (Fermilab)
The U.S. Muon Accelerator Program is conducting a multi-year R&D program to evaluate the feasibility of the technologies required for a Neutrino Factory and Muon Collider. The design concepts for a Higgs Factory and multi-TeV Muon Collider are described and the status of the major R&D activities for these machines are summarized. The potential for a high energy physics facility based on muon accelerator technology is discussed. |
<table>
<thead>
<tr>
<th>30-Sep-13 11:30 – 12:00 Oral Auditorium A (Parallel)</th>
<th>MOYBA — Invited Oral Presentation, Colliders</th>
<th>Chair: D.F. Sutter (UMD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOYBA1 11:30</td>
<td>The CLIC Project - Status and Prospects – E. Adli (University of Oslo, CERN, SLAC)</td>
<td>Following the feasibility demonstration of the novel CLIC technology and the publication in 2012 of a CLIC Conceptual Design Report for a Multi-TeV Linear Collider to be built in stages, a new phase towards a Technical Design is being launched by a global collaboration of volunteer institutes. The presentation will review the status and plans of the CLIC study outlining the developments planned for the next project phase.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30-Sep-13 12:00 – 12:30 Oral Auditorium A (Parallel)</th>
<th>MOOAA — Contributed Oral Presentations, Colliders</th>
<th>Chair: D.F. Sutter (UMD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOOAA1 12:00</td>
<td>High-Energy Particle Colliders: the Past 20 Years, the Next 20 Years, and the Distant Future – V.D. Shiltsev (Fermilab)</td>
<td>Particle colliders for high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the colliding beam method and the history of colliders, discusses the development of the method over the last two decades in detail, and examines near-term collider projects that are currently under development. The paper concludes with an attempt to look beyond the current horizon and to find what paradigm changes are necessary for breakthroughs in the field.</td>
</tr>
<tr>
<td>MOOAA2 12:15</td>
<td>Status of the Electron-positron Collider VEPP-2000 – A.L. Romanov, D.E. Berkavev, I. Koop, A.N. Krykotin, A.P. Lysenko, E. Perevedensv, V.P. Prosvetov, Yu. A. Rogovsky, A.I. Senchenko, P.Yu. Shatunov, Y.M. Shatunov, D.B. Shwartz, A.N. Skrinsky, I. Zemlyansky (BINP SB RAS)</td>
<td>VEPP-2000 began high energy physics experiments at the end of 2010 and finished its third experimental season in June of 2013. The last season was dedicated to the energy range of 160-510 MeV per beam. Compton backscattering based energy measurements were used for the regular energy calibration of the VEPP-2000 in conjunction with resonance depolarization and NMR based methods. The concept of the round colliding beams lattice along with the precise orbit and lattice correction yielded the high peak luminosity of 1.210^{31} cm^{-2}s^{-1} at 505 MeV with average luminosity of 0.910^{31} cm^{-2}s^{-1} per run. The total tune shift up to 0.14 that corresponds to beam-beam parameter ksi=0.1 per one interaction point was achieved in runs at 390MeV. The injection system is currently in the process of being upgraded to allow the injection of particles at the top energy of the collider VEPP-2000 and to eliminate the present lack of positrons.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30-Sep-13 10:30 – 11:00 Oral Auditorium B (Parallel)</th>
<th>MOYAB — Invited Oral Presentation, Light Sources</th>
<th>Chair: M. Borland (ANL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOYAB1 10:30</td>
<td>Challenges and Perspectives for Diffraction Limited Storage Ring Light Sources – R.O. Hettel (SLAC)</td>
<td>This presentation provides an overview of the scientific motivation for developing diffraction limited storage ring (DLSR) light sources, reviews the main R&D challenges associated with DLSR implementation and summarizes the worldwide effort presently in progress to build a new generation of very low emittance rings.</td>
</tr>
</tbody>
</table>

2 Pasadena, CA, USA, 29 September–4 October 2013
30-Sep-13 11:00 – 11:30 Oral Auditorium B (Parallel)
MOOAB — Contributed Oral Presentations, Light Sources
Chair: M. Borland (ANL)

MOOAB1 11:00
Initial Design of the MaRIE 1.0 X-FEL Linac
The MaRIE 1.0 X-FEL requires an electron beam at 12 GeV with 100pC bunch charge, 0.2 μm RMS normalized transverse emittance, and 0.15% RMS slice energy spread. These requirements place significant constraints upon the use of techniques, such as laser heaters, which have enabled other X-FELs to reach their design goals. In this paper, we present the current baseline design and performance of the MaRIE 1.0 linac, highlight current and anticipated challenges and describe potential alternate approaches for meeting our design performance goals.

MOOAB2 11:15
Ultra-low Emittance Upgrade Options for the Diamond Light Source
R. Bartolini, N.P. Hammond, J. Kay, R.P. Walker (Diamond) T. Pulampong (JAI)
Many synchrotron radiation facilities are studying lattice upgrades in order to lower the natural emittance and hence increase the radiation brightness. While large circumference rings are favoured in reaching ultra small emittance, recent advances in design and optimisation tools allow also medium size ring to reach emittances down to the 100s pm region with workable lattices. Diamond is investigating a novel design whereby low emittance is conjugated with doubling of the capacity of the ring, based on a double double bend achromat (DDBA) cell. Plans for the installation of two low emittance cells will be presented. These will serve as prototype for a full phased upgrade of the storage ring.

30-Sep-13 11:30 – 12:30 Oral Auditorium B (Parallel)
MOYBB — Invited Oral Presentations, Beam Dynamics and Electromagnetic Fields
Chair: M. Borland (ANL)

MOYBB1 11:30
Analysis of Transverse Instabilities observed at J-PARC MR and their Suppression using Feedback Systems
Y.H. Chin (KEK)
This talk should present an analysis of transverse instabilities observed at the J-PARC MR (Main Ring) and their suppression using feedback systems. Instabilities were mainly observed at low energies. About 30% of particles are lost due to the instabilities if the feedback system is turned off at the beam power of 120kW. Both horizontal and vertical instabilities were observed. An analysis unveils that a dipole mode has a temporal appearance of higher-order head-tail modes if the chromaticity is sufficiently large. The development of instabilities in the presence of a large chromaticity should be considered for conditions beyond the Sacherer’s text book case.

MOYBB2 12:00
Transverse Impedance and Transverse Instabilities in Fermilab Booster
A. Macridin (Fermilab)
Impedances of the Fermilab Booster are strongly amplified by direct beam interaction with laminations of its bending dipoles. It results in a fast transverse instability. Interference of effects of large space charge and large impedance does not allow building an analytical theory of the instability leaving numerical simulations as only reliable way to describe the instability. The paper should present a comparison of computer simulations with experimental measurements for the Fermilab Booster.
The CEBAF 12 GeV Upgrade at Jefferson Lab – L. Harwood (JLAB)

This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

Full 3D Stochastic Cooling at RHIC – K. Mernick, M. Blaskiewicz, J.M. Brennan (BNL)

Over the past several years, the installation of the full 3-dimensional stochastic cooling system in RHIC has been completed. The FY12 U-U and Cu-Au collider runs were the first to benefit from the full installation. In the U-U run, stochastic cooling improved the integrated luminosity by a factor of 5. This presentation provides an overview of the design of the stochastic cooling system and reviews the performance of the system during the FY12 heavy ion runs.

ARIEL Electron Linac – S.R. Koscielniak (TRIUMF)

The TRIUMF Advanced Rare Isotope Laboratory (ARIEL) phase I is funded since 2010 June by federal and BC provincial governments. ARIEL I comprises buildings and electron linac; the future phase II includes hot cells, target stations, mass separators and beam transport to ISAC experimental areas. The linac vault and He compressor building were completed 2012. The ARIEL targets building completion is 2013 Aug. With the exception of the 30 MeV accelerator cryomodule and second klystron and HV power supply, the linac major procurements are complete. This paper reports highlights from preliminary equipment tests in the following systems: locally manufactured niobium 9-cell cavity, 300 keV electron gun, 4 K cryogenic plant and sub-atmospheric pumps, 270 kW c.w. klystron and 65 kV DC power supply. Status of the 10 MeV injector cryomodule assembly and beamlines construction will also be addressed.

The RHIC Polarized Source Upgrade – A. Zelenski (BNL)

A novel polarization technique had been successfully implemented in the RHIC polarized H- ion source upgrade to higher intensity and polarization for use in the RHIC polarization physics program at enhanced luminosity RHIC operation. In this technique a primary proton beam inside the high magnetic field solenoid is produced by charge-exchange ionization of the atomic hydrogen beam in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. Formation of the proton beam is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. Polarized beam intensity produced in the source exceeds 4.0 mA. Maximum polarization of 84% was measured at 0.3 mA beam intensity and 80% at 0.5 mA in 200 MeV polarimeter. This high beam intensity allowed reduction of the longitudinal and transverse beam emittances at injection to AGS to reduce polarization losses in AGS. The source reliably delivered polarized beam for 2013 run in RHIC at $\sqrt{s}=510$ GeV. This was a major contribution to the RHIC polarization increase to over 60 % for colliding beams.

Linac4 is a normal-conducting 160 MeV H+ linear accelerator presently under construction at CERN. It will replace the present 50 MeV Linac2 as injector of the proton accelerator complex as part of a project to increase the LHC luminosity. The Linac front-end, composed of a 45 keV ion source, a Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) housing a beam chopper, have been commissioned at the 3 MeV test stand during the first half of 2013. The status of the installation and the results of the first commissioning stage are presented in this paper.

Proton Accelerator Development in China – S. Fu (IHEP)

The China Spallation Neutron Source (CSNS) and the Chinese Accelerator Driven Systems (C-ADS) projects are both underway in China. The CSNS includes a 100 kW RCS accelerator and first beam on target is planned for 2017. The C-ADS project includes a high power superconducting linac with a low energy (25-50 MeV) initial stage by 2015 and higher power deployment later. In addition to these intense-beam proton accelerators, some other proton accelerators for various applications are also under construction or planned. In this paper, the plans, R&D and construction activities of these projects will be discussed.
MOZBB — Invited Oral Presentation, Alternative Acceleration Schemes
Chair: J.R. Delayen (ODU)

MOZBB1 14:30
The Fermilab Advanced Superconducting Test Accelerator (ASTA) Facility – P. Piot (Fermilab, Northern Illinois University)
The Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab will enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SRF) linac coupled to a photoinjector and small-circumference storage ring capable of storing electrons or protons. This report describes the facility, its capabilities, and provide an overview of enabled research thrusts.

MOOBB — Contributed Oral Presentations, Alternative Acceleration Schemes
Chair: J.R. Delayen (ODU)

MOOBB1 15:00
The AWAKE Proton-Driven Plasma Wakefield Acceleration Experiment at CERN – P. Muggli (MPI)
Proton (p+) bunches are interesting as wakefield drivers because they carry large amounts of energy (many kJ) and because the p+ rigidity is also large. Simulations show that a short p+ bunch (~100 microns) can drive and sustain GV/m accelerating fields over very long plasma distance, corresponding to a large average acceleration gradient. These wakefields can potentially accelerate a witness electron bunch to the TeV level in a few hundred meters. Self-modulation instability (SMI) of long p+ bunches (~10 cm) available today can lead to the formation of a train of bunches that can resonantly drive wakefields to the GV/m level. Based on this scheme the AWAKE collaboration proposes to use the CERN SPS bunch to study the SMI of p+ bunches in ~10m plasma with density in the 1-10x10^15/cc range. The wakefields is sampled by externally “side-injected” electrons. Acceleration from a few MeV to a few GeV is expected. Operating at lower plasma density eases external injection requirements. The experimental set up and program will be presented. Expectations based on numerical simulations of the SMI and acceleration processes will be described. Long-term goals will also be outlined.

MOOBB2 15:15
We report the first observation of high-gradient acceleration of electrons in a lithographically fabricated micron-scale dielectric optical accelerator driven by a mode-locked Ti:sapphire laser. We have observed acceleration gradients far exceeding those of conventional microwave accelerator structures. Additionally, we have verified the dependence of the observed acceleration gradient on: the laser pulse energy, the laser-electron temporal overlap, the polarization of the laser, and the incidence angle of the laser. In all cases, we have found good agreement between the observed results, the analytical predictions, and the particle simulations.
MOOCB — Contributed Oral Presentations, Alternative Acceleration Schemes
Chair: J.A. Holmes (ORNL)

MOOCB1 15:30
Generation of Monoenergetic Protons by Laser Acceleration of Multi-Ion Foils with Polarization Switch – T.-C. Liu, C.-S. Liu, X. Shao (UMD) S.-H. Chen (NCU) B. Eliasson (Ruhr-Universität Bochum) J. Wang (IAMs)

Laser radiation pressure acceleration is considered as an effective method in obtaining high energy quasi-monoenergetic ions. By irradiating a laser beam on a multi-species target made of carbon and hydrogen, the proton layer can be accelerated ahead of the carbon ion layer due to a higher charge-to-mass ratio. And the shielded Coulomb repulsion provided by the left-behind electron-carbon layer can not only further accelerate the proton layer, but also stabilize it for a long time. The acceleration time of quasi-monoenergetic protons by the combined mechanisms is extended over ten times longer compared to the case of applying single-species targets and using radiation pressure acceleration alone. 60 MeV of quasi-monoenergetic protons from a multi-species foil with input laser power of 70 TW is obtained, which is at least five times greater than the energy obtainable from pure hydrogen targets. To further increase the efficiency, we achieve an improvement of 30 percent energy enhancement by introducing a polarization switch in the laser profile. An analytical approach to interpret and optimize the results is also studied.

MOOCB2 15:45

The underdense plasma photocathode concept (aka Trojan horse)*,** is a promising approach to achieving fs-scale electron bunches with pC-scale charge and transverse normalized emittance below 0.01 mm-mrad, yielding peak currents of order 100 A and beam brightness as high as 10^19 A/(m rad)^2, for a wide range of achievable beam energies up to 10 GeV. A proof-of-principle experiment will be conducted at the FACET user facility in early 2014. We present 2D and 3D simulations with physical parameters relevant to the planned experiment.

MOODB — Contributed Oral Session, Beam Dynamics and Electromagnetic Fields
Chair: J.A. Holmes (ORNL)

MOODB1 16:00
Beam-Beam Limit in an Integrable System – A. Valishev, S. Nagaitsev (Permilab) V.V. Danilov (ORNL) D.N. Shatilov (BINP SB RAS)

Round colliding beams have been proposed as a way to push the attainable beam-beam tune shift limit, and recent successful experiments at the VEPP-2000 collider at BINP demonstrated the viability of the concept. In a round-beam system the dynamical stability is improved by introducing an additional integral of motion, which effectivley reduces the system from a two and a half dimensional to one and a half dimensional. In this report we discuss the possible further improvement through adding the second integral of motion and thus making the system fully integrable. We explore the ultimate beam-beam limit in such a system using numerical simulations taking into account various imperfections.
A Model Ring With Exactly Solvable Nonlinear Motion
T.V. Zolkin (University of Chicago) Y. Kharkov, I.A. Morozov (BINP SB RAS) S. Nagaitsev (Fermilab)

Recently, a concept of nonlinear accelerator lattices with two analytic invariants has been proposed. Based on further studies, the Integrable Optics Test Accelerator (IOTA) was designed and is being constructed at the FNAL. Despite the clarity and transparency of the proposed idea, the detailed analysis of the beam motion remains quite complicated and should be understood better even for the case when no perturbations are taken into account. In this paper we will review one of the three proposed realizations of the integrable optics, where the variables separation is possible in polar coordinates. This system allows for an exact analytical solution expressed in terms of elliptic integrals and Jacobi elliptic functions. It gives the possibility to check numerical algorithms used for tracking and to perform more rigorous analysis of the motion in comparison with the "crude" analysis of the topology of the phase space. In addition we will discuss some difficulties associated with numerical simulations of such a comparatively complex dynamical system and will take a look at the possible perturbations for a model machine.

RHIC operations with heavy ion beams at energies below 10 GeV/nucleon are motivated by a search for the QCD Critical Point. An electron cooler is proposed as a means to increase RHIC luminosity for collider operations at these low energies. The electron cooling system should be able to deliver an electron beam of adequate quality over a wide range of electron beam energies (0.9–5 MeV). It also should provide optimum 3-D cooling for both hadron beams in the collider. A method based on bunched electron beam, which is also a natural approach for high-energy electron cooling, is being developed. In this paper, we describe the requirements for this system, its design aspects, as well as the associated challenges.

To search for the critical point in the QCD phase diagram, Au-Au collisions at beam energies between 2.5 and 15 GeV are required. While RHIC has successfully operated at 3.85 and 5.75 GeV, the performance achieved at 2.5 GeV is not sufficient for a meaningful physics program. We report on dedicated beam experiments performed to understand and improve this situation.

In the 2012 RHIC heavy ion run, we collided uranium-uranium (U-U) ions at 96.4 GeV/nucleon and copper-gold (Cu-Au) ions at 100 GeV/nucleon for the first time in RHIC. The new Electron-Beam Ion Source (EBIS) was used for the first time to provide ions for the RHIC physics program. After adding the horizontal cooling, 3-D stochastic cooling became operational in RHIC for the first time, which greatly enhanced the luminosity. In this article, we first review the improvements and performances in the 2012 RHIC ion runs. Then we discuss the conditions and approaches to achieve the burn-off dominated Uranium beam lifetime at physics stores. And we discuss the asymmetric copper-gold collision due to different IBS and stochastic cooling rates, and the operational solutions to maximize the integrated luminosity.

Nanometer Beam Generation and Measurements in KEK-ATF2 – G.R. White (SLAC)

Techniques for generation and measurements of ultra small beams in the few nanometer range for applications in the final focus of high energy linear colliders are being developed and tested in the KEK ATF2. After reviewing the presently achieved performances and their possible progress in the future, the presentation should outline the basic limitations and realistic figures for application in future facilities.
TUYAA1 10:30

The Project-X Injector Experiment: A Novel High Performance Front-end for a Future High Power Proton Facility at Fermilab – S. Nagaitsev (Fermilab)

This presentation should describe the Project X Injector Experiment (PXIE) and its connection with Project X. It should focus on the novel aspects of PXIE, namely the programmable, bunch-by-bunch chopping of a CW H+ beam; acceleration in CW superconducting RF structures immediately following the RFQ; operation of SRF structures adjacent to a high-power chopper target; and preservation of high-quality chopped beams with acceptable emittance growth and halo.

TUYBA1 11:30

Beam Instrumentation for High Power Hadron Beams – A.V. Aleksandrov (ORNL)

This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.
developed for accelerator R&D stewardship. Here we describe the evolution of the stewardship task starting from its origins in the ongoing accelerator R&D program, the mission of the new program, and initial steps being taken to implement it. Several initiatives are currently being considered to launch the program, and these will be indicated. Involvement of the accelerator community in developing ideas for future stewardship activities will be crucial to the ultimate success of the program.

01-Oct-13 08:30 – 09:30 Oral Auditorium B (Parallel)

TUTB — Tutorial, Light Sources
Chair: T. Rao (BNL)

TUTB1 08:30
High-energy, High-current ERLs – G.H. Hoffstaetter (Cornell University, Laboratory for Accelerator-Based Sciences and Education)
This tutorial covers the design issues for ERLs and description of various projects that rely on ERLs, including the JLAB-FEL, LHeC, eRHIC, Cornell's x-ray ERL, KEK's CERL, BERLinPro, and MARS. It highlights recent progress toward beam parameters of ERL beams in terms of emittance and current, as well as hardware prototypes and progress toward ERL cryomodules, and operational experiences with CW SRF, essential for ERLs.

01-Oct-13 09:30 – 10:00 Oral Auditorium B (Parallel)

TUOAB — Contributed Oral Presentations, Accelerator Technology
Chair: T. Rao (BNL)

TUOAB1 09:30
Advances in Photocathode Technology at Cornell University – S.S. Karkare (Cornell University)
Beam brightness from modern day photoinjectors is limited by the photocathode. A multifaceted photocathode development program has been undertaken at Cornell University with a goal to develop the ultimate photocathode which has high quantum efficiency, low mean transverse energy, quick response time and a long lifetime. Positive affinity cathodes like CsK2Sb and NaK2Sb have been grown using different kinds of alkali metal sources (alkali-azide and pure metal), characterized and tested in the Cornell-ERL photoinjector. Novel layered structures of various III-V semiconductors like GaAs and AlGaAs grown using Molecular Beam Epitaxy and activated to negative electron affinity using Cs and NF3 are also being investigated. Surface and photoemission diagnostics like Auger spectroscopy, LEED, RHEED and the 2D-electron energy analyzers have been connected in vacuum to the photocathode growth and preparation chambers to fully characterize the surface and emission properties of the materials grown. A Monte Carlo based simulation has also been developed to predict photoemission from layered semiconductor structures and help design novel structures to optimize the photoemission properties.

TUOAB2 09:45
RadiaBeam Technologies is developing carbon nanotube (CNT) based field emission cathodes for DC-pulsed and radio-frequency electron sources. CNT cathodes offer simple operation, have demonstrated high current densities, and can maintain low thermal emittance due to their ability to emit at room temperature. The experimental results of testing CNT cathodes are presented, including high-voltage tests, lifetime studies, and initial performance in an RF gun. Additionally, some of the challenges posed by the fabrication and handling of the CNT cathodes are discussed.

North American PAC 2013
Corrugated Structures for Terahertz Generation and Beam Dechirping – K.L.F. Bane (SLAC)

In recent studies a metallic pipe with small corrugations has been considered for two applications: as a beam-based method of generating pulses of terahertz radiation, and for simply and cheaply removing unwanted energy chirp in linac-based X-ray FELs. With a pipe of length ~10 cm and aperture ~1 mm, narrow-band, multi-cycle pulses of radiation can be generated, with frequency ~1 THz and pulse energy of a few mJ. In linac-based FELs, after the final bunch compressor, the electron bunch typically is left with an energy chirp. An inexpensive way for dechirping is to have the beam pass through ~10 m of corrugated pipe. This report presents and analyzes the performance of the corrugated structure for both mentioned purposes. Experimental tests are also discussed.

Novel Methods for Experimental Characterization of 3D Superconducting Linac Beam Dynamics – A.P. Shishlo (ORNL)

This presentation should describe new measurement techniques used to understand linac beam dynamics, and the results of their application in the SNS superconducting linac.

Space-charge Compensation for High-intensity Linear and Circular Accelerators at Fermilab – M. Chung, L.R. Prost, V.D. Shiltsev (Fermilab)

Space-charge effects have long been recognized as a fundamental intensity limitation in high-intensity linear and circular accelerators. As the mission of the US high energy physics program is pushing the Intensity Frontier, it is very timely to explore novel schemes of space-charge compensation that could significantly improve the performance of leading high-intensity proton accelerator facilities such as Project-X. In this work, we present two activities at Fermilab on the space-charge compensation experiments based on residual gas ionization: 1) neutralized beam transport of continuous-wave (CW) H- beam in Project-X Injector Experiment (PXIE); and 2) trapped electron plasmas for space-charge compensation in the newly proposed Integrable Optics Test Accelerators (IOTA) ring. Characteristics of the stability in the beam-plasma system, the dynamics of beam neutralization, and the transition between neutralized and un-neutralized beam transports are discussed for each configuration.

Experimental Verification of Single-bunch Accumulation Limit Dependence on Impedance at the APS – V. Sajaev, M. Borland, Y.-C. Chae, L. Emery (ANL)

One of the unique features of the Advanced Photon Source is operation with a small number of intense bunches – standard operating mode has twenty four 16-nC bunches, while in a special operating mode one of the bunches has a charge of 60 nC. Such high single bunch currents are achieved by a combination of high operational chromaticity and transverse bunch-by-bunch feedback. In the near future, more narrow-gap insertion device vacuum chambers will be installed, which will increase impedance of the storage ring and make
operation with high single-bunch current more problematic. Simulations exist that quantify the effect of increased impedance on the APS single-bunch accumulation limit; however, no experimental verification has been performed yet. In this paper, we will present our first measurement of the single-bunch accumulation limit as a function of effective impedance. Different impedance values were achieved by changing storage ring beta functions.

TU0BB3
12:00
Imposing Strong Energy Slews with Transverse Deflecting Cavities – N.A. Yampolsky, A. Malyzhenkov
(LANL)

We propose a novel scheme for imposing strong energy slews in short electron bunches using a set of transverse deflecting cavities. Such a cavity introduces the angular divergence depending on the longitudinal position and the energy variation depending on the transverse position. Combining several cavities and vacuum drifts we first expand the beam transversally keeping x-z correlation of the distribution, then apply the energy variation, and focus the beam back. The transform matrix of the scheme is equivalent to a single chirping cavity. At the same time, the strength of the R_{65} element is strongly increased compared to conventional accelerating cavities. The overall energy variation along the bunch is defined by the transverse size of the beam in the middle of the beamline rather than its longitudinal size. As a result, the strength of the R_{65} element can be increased by 2 orders of magnitude compared to conventional design. This scheme allows for acceleration on crest increasing average accelerating gradient and reducing accelerating cost. It also allows for using weaker chicanes in compressors.

TU0BB4
12:15

The imaging of extremely small, sub-5 micron, transverse beam spot sizes has been a priority in accelerator physics. Here we propose a scheme to generate and image a beam spot size about 1 micron at PEGASUS laboratory at UCLA. We are preparing a 0.8 mm, 1 pC, 10 MeV electron beam to be sent through a permanent magnet quadrupole (PMQ) triplet of strength 130 T/m, focusing the beam to a waist 1.5 microns and a total focal length of 4.5 mm. We use a YAG screen at the beam waist and a mirror to direct optical (520 nm green) light into a Schwarzschild microscope to collimate the light. We will then image the beam using a CCD camera outside of the beam line.

TUZAA1
14:00
Electron-Ion Collider Proposals Worldwide – Y. Zhang (JLAB)

This talk should review the status of world-wide Electron-Ion Colliders proposals and designs, including the MEIC at JLAB, eRHIC at BNL and the LHeC at CERN.

TUZAA2
14:30
Beam Physics in Future Electron Hadron Colliders – A. Valloni (CERN)

High-energy electron-hadron collisions could support a rich research programme in particle and nuclear physics. Several future projects are being proposed around the world, in particular eRHIC at BNL and MEIC at JLAB in the US, and LHeC at CERN in Europe. This presentation will highlight some of the accelerator physics issues, and describe related technical developments and challenges for these machines. In particular, optics design and beam dynamics studies are discussed, including longitudinal phase space manipulation, coherent synchrotron radiation, beam-beam kink instability, ion effects, as well as...
mitigation measures for beam break up and for space-charge induced emittance growth, all of which could limit the machine performance. Finally, first steps are presented towards an LHeC R&D facility, which should investigate relevant beam-physics processes.

TUOCA — Contributed Oral Presentations, Colliders

Chair: Y.H. Chin (KEK)

TUOCA1 15:00

Collimation with Hollow Electron Beams: A Proposed Design for the LHC Upgrade – G. Stancari, V. Previdi, A. Valishev (Fermilab) R. Bruce, S. Redaelli, A. Rossi, B. Salvachua (CERN) V. Moens (EPFL)

Collimation with hollow electron beams is a technique for halo removal in high-power hadron beams. A magnetically confined, pulsed electron beam with a hollow current-density profile overlaps with the circulating beam over a short section of the ring. If the electron distribution is axially symmetric, the beam core is unperturbed, whereas the halo experiences smooth and tunable transverse kicks. This device addresses some of the limitations of traditional collimators, such as material damage, impedance, loss spikes during setup, and fragmentation in the case of ion collimation. The technique was tested extensively at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses*. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, the applicability of this technique to the LHC is being investigated and a conceptual design was developed. We review some of the main topics related to this study: the development of hollow electron guns; tracking simulations to estimate achievable halo removal rates and the effects of imperfections on the proton core; and integration of the device in the LHC machine.

TUOCA2 15:15

In the 2013 RHIC polarized proton run, it was found that the RHIC bunch intensity has reached a limit due to the head-on beam-beam interaction at 2x10^{11}, as expected by simulations. To overcome this limitation, two electron lenses will be used for compensation. We report on the commissioning of new lattices that reduce beam-beam driven resonance driving terms, and bunch-by-bunch proton diagnostic during 2013 run. The effect of electron beam transport solenoids on the proton orbit was tested. The instrumentation for Blue electron lens was tested and electron beam was propagated from the gun to the collector. A timing system was implemented for the electron beam. Control software, machine protection and synoptic display were developed and tested during commissioning. Both Blue and Yellow electron lens superconducting magnets are installed and their field straightness was measured and corrected in the tunnel using a magnetic needle. The Yellow vacuum system and backscattered electron detectors installation are also completed now.
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUODA1</td>
<td>High Pressure Gas-Filled RF Cavities for Use in a Muon Cooling Channel – B.T. Freemire, P.M. Hanlet, Y. Torun (IIT) M. Chung, M.R. Jana, M.A. Leonova, A. Moretti, T.A. Schuwarz, A.V. Tollestrup, Y. Torun, K. Yonehara (Fermilab) M.G. Collura (Politecnico di Torino) R.P. Johnson (Muons. Inc.)</td>
<td>A high pressure hydrogen gas-filled RF (HPRF) cavity can operate in the multi-Tesla magnetic fields required for a muon accelerator cooling channel. A beam test was performed at the Fermilab MuCool Test Area by sending a 400 MeV proton beam through an 805 MHz cavity and quantifying the effects of the resulting plasma within the cavity. The resulting energy loss per electron-ion pair produced has been measured at 10^{-18} to 10^{-16} J every RF cycle. Doping the hydrogen gas with oxygen greatly decreases the lifetime of an electron, thereby improving the performance of the HPRF cavity. Electron lifetimes as short as 1 ns have been measured. The recombination rate of positive and negative ions in the cavity has been measured on the order of 10^{-8} cm3/s. Extrapolation in both gas pressure and beam intensity are required to obtain Muon Collider parameters, however the results indicate HPRF cavities can be used in a muon accelerator cooling channel.</td>
</tr>
<tr>
<td>TUODA2</td>
<td>Test of Optical Stochastic Cooling in the IOTA Ring – V.A. Lebedev, Y. Tokpanov (Fermilab) M.S. Zolotorev (LBNL)</td>
<td>A new 150 MeV electron storage ring is being built at Fermilab. The construction of a new machine pursues two goals a test of highly non-linear integrable optics and a test of optical stochastic cooling (OSC). This paper discusses details of OSC arrangements, choice of major parameters of the cooling scheme and experimental tests of the optical amplifier prototype. The amplifier uses highly doped Ti-sapphire crystal as amplification medium. The major goal of experiments is to measure the amplifier dispersion which determines lengthening of single particle signal and the effective bandwidth of the system.</td>
</tr>
<tr>
<td>TUZBA1</td>
<td>The Digital RF Control Revolution – C. Hovater (JLAB)</td>
<td>Over the last 20 years a migration has taken place from analog signal processing to digital signal processing for RF cavity control. The motivation behind the new generation of RF controls is twofold. Some of it can be attributed to the challenging RF control requirements needed for the higher performing cavities and accelerators. Second is the explosive growth of digital communication technology and its applicability to RF cavity control. The flexibility and performance of digital controls has allowed these new accelerators (especially light sources) to meet their requirements. This presentation reviews the historical advances of the technology and the world-wide progress in digital RF system control for linacs, rings, normal conducting and superconducting RF systems.</td>
</tr>
</tbody>
</table>
TUZB — Invited Oral Presentations, Light Sources and FELs

Chair: M. Peiniger (RI Research Instruments GmbH)

TUZB1 14:00 Free Electron Lasers in the Soft X-ray Regime – J.N. Corlett (LBNL)
The science needs for probing materials to determine electronic structure with elemental specificity, imaging, and spectroscopies, with ultrafast time resolution, drive soft X-ray FEL design. In addition to operational soft X-ray facilities, there are FEL construction projects under way that include soft X-ray laser capabilities, and planned facilities with novel capabilities. This paper provides a review of the exciting field of existing and planned soft X-ray Free Electron Lasers with the emphasis on new schemes and new technologies to achieve better performance.

TUZB2 14:30 Developments in Hard X-ray FELs – H.-S. Kang (PAL)
LCLS has accumulated significant operational experience, now including hard X-ray self-seeding, and SACLA has successfully delivered hard X-ray laser beams to users. The European XFEL is in an advanced stage of construction, the SwissFEL and PAL-XFEL projects are in early stages of construction, and MaRIE is in planning stages. This presentation should provide an overview of progress and plans for hard x-ray facilities worldwide.

TUOCB — Contributed Oral Presentations, Light Sources and FELs

Chair: M. Peiniger (RI Research Instruments GmbH)

TUOCB1 15:00 Machine Based Optimization Using Genetic Algorithms in a Storage Ring – K. Tian, J.A. Safranek, Y.T. Yan (SLAC)
The genetic algorithm (GA) has been a popular technique in optimizing the design and operation of particle accelerators. As a population based algorithm, GA requires a large amount of evaluations of the objective functions, which can be very time consuming. One can benefit from parallel computing with significantly reduced computing time when fulfilling the function evaluation by a numerical machine model in simulation codes. As a result, this is the most common approach in GA applications. In this paper, we present a successful experimental demonstration of applying the GA in real machine based optimization. We conduct the optimization of the linear coupling of the SPEAR3 storage ring using the GA by directly varying the strengths of SPEAR 3 skew quadrupoles, the decision variables, and measuring the beam loss rates, the sole objective function. The results in this paper can shed light on new applications of GAs in particle accelerator community.

The Advanced Light Source (ALS) at Berkeley Lab is one of the brightest sources for soft x-rays worldwide. A multi-year upgrade of the ALS is underway, which includes new and replacement x-ray beamlines, a replacement of many of the original insertion devices and many upgrades to the accelerator. The accelerator upgrade that affects the ALS performance most directly is the brightness upgrade, which reduced the horizontal emittance from 6.3 nm to 2.0 nm (2.5 nm effective), resulting in one of the lowest horizontal emittance of operating light sources. Magnets for this upgrade were installed in late 2012 and early 2013, followed by successful commissioning and user operation with 2.0 nm horizontal emittance.

Space charge forces acting in a mismatched beam have been commonly identified as a major cause of beam halo. The knowledge of the details of the initial 6D phase-space distribution is very important for simulation. We have characterized the beam transversal 4D distribution in the experiment and then used this initial beam parameters to simulate the beam dynamics.

Longitudinal Beam Dynamics and LLRF Requirements for the Project X Pulsed Linac – A. Vivoli, G.I. Cancelo, B. Chase, N. Solyak (Fermilab)

Project X is a high intensity proton facility being developed to support the intensity frontier physics program over the next two decades at Fermilab. The Reference Design is based on a continuous wave (CW) superconducting 3 GeV linac providing up to 1 and 3 MW of beam power at 1 and 3 GeV respectively, while a superconducting pulsed linac provides acceleration of roughly 4.3% of the beam delivered from the CW linac to the 8 GeV injection energy of the existing Recycler/Main Injector complex. In this paper we present the results of simulation of longitudinal beam dynamics and Low Level RF (LLRF) control system in the pulsed linac, operated for long pulses in presence of errors and cavity detuning for different RF configurations and settings, and set the requirements for the LLRF necessary to fulfill the specifications of the design.

Multi-Turn Injection of 50 MeV Protons Into the CERN Proton Synchrotron Booster – V. Ragainel, E. Benedetto, C. Carlì, B. Mikulec (CERN)

Since 1978, Linac2 produces beams of 50 MeV protons with an average current of 150 mA, which are injected into the CERN Proton Synchrotron Booster (PSB) with conventional multi-turn injection using a septum. It is planned to replace Linac2 during a future long stop with a new H- linac, Linac4, injecting at higher energy (160 MeV) and making use of the modern charge-exchange injection principle. Due to the age of Linac2 and to a delicate vacuum situation the risk of a serious Linac2 breakdown has to be considered. Therefore it is necessary to know if the PSB could produce beams useful for the LHC and other experiments injecting a Linac4 proton beam at 50 MeV with much lower average current compared to Linac2 and without the need for a long installation of the 160 MeV H- injection hardware. Benchmarking of the PSB injection model with the existing injection system with Linac2 using the ORBIT code has been done for several types of beams (low intensity to high intensity beams), and then the injection model was used to estimate the brightness for LHC-type beams that could potentially be reached in one PSB ring with the injection of a Linac4 proton beam.
nuSTORM: Neutrinos from STORed Muons – A.D. Bross (Fermilab)

Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study short-baseline neutrino oscillation and neutrino interaction physics. In this talk, I will describe the facility, nuSTORM, and show how the unique neutrino beam at the facility will enable experiments of unprecedented precision to be carried out. I will present sensitivity plots that indicated that this approach can provide well over 5 sigma confirmation or rejection of the LSND/MinBooNE results and can be used to perform neutrino interaction measurements of unprecedented precision. The unique ν beam available at the nuSTORM facility has the potential to be transformational in our approach to ν interaction physics, offering a “ν light source” to physicists from a number of disciplines. Finally, the nuSTORM facility can also provide intense short-pulsed beams of low energy muons suitable for future 6D muon ionization cooling experiments. This can be simultaneously while carrying out the neutrino program.
NGLS - A Next Generation Light Source – J.N. Corlett,
We present an overview of design studies and R&D toward NGLS – a Next Generation Light Source initiative at LBNL. The design concept is based on a multi-beamline soft x-ray FEL array powered by a CW superconducting linear accelerator, and operating with a high bunch repetition rate of approximately 1 MHz. The linac design uses TESLA and ILC technology, supplied by an injector based on a CW normal-conducting VHF photocathode electron gun. Electron bunches from the linac are distributed by RF deflecting cavities to the array of independently configurable FEL beamlines with nominal bunch rates of ~100 kHz in each FEL, with uniform pulse spacing, and some FELs capable of operating at the full linac bunch rate. Individual FELs may be configured for different modes of operation, including self-seeded and external-laser-seeded, and each may produce high peak and average brightness x-rays with a flexible pulse format.

Cornell ERL Update – G.H. Hoffstaetter, C.E. Mayes (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)
Cornell University has pioneered the design and hardware for ERL lightsources. This preparatory research for ERL-lightsource construction will be discussed. Important milestones have been achieved in Cornell’s prototype ERL injector, including the production of a prototype SRF cavity that exceeds design specifications, the regular production of long-lived and low emittance cathodes, the acceleration of ultra-low emittance bunches, and the world-record of 75 mA current from a photoemission DC gun. We believe that demonstration of the practical feasibility of these technologies has progressed sufficiently to allow the construction of an ERL-based lightsource like the Cornell ERL.

The first prototype superconducting undulator (SCU0) was successfully installed and commissioned at the Advanced Photon Source (APS) and is delivering photons for user science. All the requirements before operating the SCU0 in the storage ring were satisfied during a short but detailed beam commissioning. The cryogenic system performed very well in the presence of the beam. The total beam-induced heat load on the SCU0 agreed well with

North American PAC 2013
the predictions, and the SCU0 is protected from excessive heat loads through a combination of orbit control and SCU0 alignment. When powered, the field integral measured with the beam agreed well with the magnet measurements. An induced quench caused very little beam motion, and did not cause loss of the beam. The device was found to quench during unintentional beam dumps, but quench recovery is transparent to storage ring operation. There were no beam chamber vacuum pressure issues and no negative effect observed on the beam. Finally, the SCU0 was operated well beyond its design requirements, and no significant issues were identified. The beam commissioning results are described in this paper.

Low Emittance in the Cornell ERL Injector Prototype – C.M. Gulliford, A.C. Bartnik, I.V. Bazarov, B.M. Dunham (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)

We present a detailed study of the emittances produced in the Cornell Energy Recovery Linac Photoinjector. Both the horizontal and vertical transverse phase spaces, as well as the time-resolved (sliced) horizontal phase space, were simulated and directly measured at the end of the injector for 19 pC and 77 pC bunches at roughly 8 MeV. The resulting 90% normalized transverse emittances for 19 (77) pC/bunch were $0.23 \pm 0.02 (0.51 \pm 0.04) \mu m$ in the horizontal plane, and $0.14 \pm 0.01 (0.29 \pm 0.02) \mu m$ in the vertical plane, respectively. These emittances were measured with a corresponding bunch length of $2.1 \pm 0.1 (3.0 \pm 0.2)$ ps, respectively. For both bunch charges, the rms momentum spread was determined to be on the order of 10–3. Excellent overall agreement between measurement and simulation has been demonstrated. The beam brightness measured in this work is significantly better than the best of modern storage rings, and represents a milestone for the field of high-brightness, high-current photoinjectors.
4th generation light sources. Test of high quantum efficiency photocathodes with bunches of hundreds pC at MHz repetition rate are now underway. They include, Cs2Te cathodes developed in collaboration with INFN-LASA and multialkali antimonides (CsK2Sb), prepared by a collaborating group at LBNL. The present experimental results and the plan for future activities are presented.

Experience with the SNS Loss Monitoring and Machine Protection – A.P. Zhukov (ORNL)

The Spallation Neutron Source (SNS) is a megawatt class hadron accelerator. Beam loss monitoring is essential for machine protection, residual activation control and machine tuning. We discuss all parts of our beam loss monitoring system including its detectors, electronics, machine protection system (MPS) interface and its role in the accelerator tuning process. The system was designed more than 10 years ago, so we are now addressing obsolescence problems by designing a new FPGA based replacement. The plans for this next generation BLM system are presented.

The X-Band Test Area (XTA) at SLAC is an all X-Band compact RF photoinjector that can produce short, high current electron bunches. Computations have shown that the peak bunch brightness should exceed that from S-Band RF photoinjectors by a factor of four. This improved performance principally comes from the high (200 MV/m) peak fields that can be sustained on the gun cathode. During the first three months of XTA commissioning, 20 pC electron bunches have been routinely generated with the gun cathode operating at greater than 200 MV/m while the dark current levels have been low. The electron bunches are accelerated to 70 MeV in a one-meter long, travelling-wave, X-band structure after the gun (a newer version of this structure should allow acceleration to more than 100 MeV). This paper reviews progress to date including measurements of the bunch properties and the bunch-to-bunch stability. The lengths of the 20 pC bunches have been measured with a transverse X-Band deflection cavity to be 250 fs rms, as expected from simulations. Transverse emittance in the range of 0.9 mm-mrad have been measured. A path to reach expected low transverse emittance numbers is described.

We have been studying on the accelerator physics at Waseda University with BNL type 1.6cell rf gun. Such photocathode rf gun can generate low emittance and short bunch electron beam. Generating ultra-short electron bunch (shorter than 1ps) in a compact accelerator system would be meaningful because some applications need to be miniaturized, THz imaging, for example. However a short laser pulse cannot generate the bunch length of less than 1ps due to the space charge effects. So as to generate ultra-short electron bunch in compact system, we have newly designed Energy Chirping Cell attached rf gun (ECC rf gun). ECC is attached subsequently to the 1.6 cell. The role of ECC is to chirp the electron energy so that the electron bunch is compressed by velocity difference as it drifts. Simulation results show ECC rf gun can accelerate 100pC electron bunch with the bunch length...
shorter than 100fs. We have successfully measured the coherent THz light by synchrotron radiation and transition radiation. Therefore, we inferred that the bunch was compressed into shorter than 1ps. In this conference, we will report the results of the bunch length measurement, present progresses and future plans.

02-Oct-13 12:00 – 12:30 Oral Auditorium A (Parallel)

WEOCA — Contributed Oral Presentations, Accelerator Technology
Chair: W.L. Waldron (LBNL)

WEOCA1 12:00

Robust High Average Power Modulator — I. Roth, N. Butler, M.P.J. Gaudreau, M.K. Kempkes (Diversified Technologies, Inc.)
Diversified Technologies Inc. (DTI) designed a modulator which meets the requirements of the Spallation Neutron Source (SNS) modulators at Oak Ridge National Laboratory and will be less expensive than copies of the current modulators. The SNS modulators, under development for a decade, still do not meet the specifications for voltage, droop, or pulsewidth. The modulators must provide pulses of 85 kV, 165 A, with pulsewidths of 1.5 ms and voltage flatness of 1%. The current modulator switches the full power at high frequency during each pulse, and has a complex output transformer. DTI designed a modulator that meets all specifications and is less expensive. The proposed design is cheaper because there is an HV switch that operates at full current only once per pulse, a corrector that switches only 5% of the power at high frequency, a low-cost transformer-rectifier power supply, and no output transformer. DTI’s patented switch uses IGBTs, allowing the switch to operate at full capacity even if 20% of the devices fail. The modulator will be installed in 2013 at SNS to test klystrons. DTI will present the system components of the design as well as the performance results to date.

WEOCA2 12:15

This project seeks to develop a novel method for quench protection of high-temperature superconducting (HTS) magnets based on coupling the magnet with a high-power resonant coil. The quench protection is realized by applying an electromagnetic pulse through the resonant coil and disrupting the superconducting state in the conductor. This creates a large (10s of meters) normal zone in less than 10 ms thus ensuring even distribution of the energy dissipation. The proposed protection system does not involve generation of high voltage on the coil leads and does not contribute to cryogenic losses. The system is easily scaled to a magnet of arbitrary size. Preliminary design and POC bench top test results are presented below.

02-Oct-13 08:30 – 09:30 Oral Auditorium B (Parallel)

WETB — Tutorial, Colliders
Chair: Y. Yamazaki (FRIB)

WETB1 08:30

Physics of Polarized Protons in Accelerators — M. Bai (BNL)
RHIC has reached new record luminosity and proton beam polarizations at the collisions energy of 510 and 200 GeV. Depolarizing effects during acceleration and storage can lead to polarization profiles and therefore reduced average polarization at the collision points. The presentation will introduce the concept of depolarizing resonances and methods to overcome them during beam acceleration, measuring techniques for the proton beam polarization and techniques to maintain the beam polarization during an extended store.
The FRIB Front End will provide beams of stable ions with a mass up to uranium at a beam energy of 500 keV/u and intensity required to achieve a power of 400 kW on the fragmentation target. In this paper, we describe progress with the design and construction of the Front End and its systems.

The ATLAS National User Facility is world’s first CW superconducting linac and provides variety of ion beams for nuclear physics experiments for the past 30 years. The accelerator is being continuously upgraded to extend the scientific reach. A new normal conducting CW RFQ capable to provide total voltage up to 2.1 MV for the heaviest uranium ions has been added in the front of the SC linac in order to increase efficiency and intensity of both stable and radioactive ion beams. The RFQ has been fully integrated into the ATLAS and it is routinely operated since January 2013. A new cryomodule of high-performance 72.75 MHz SC QWRs has been built and currently it is being commissioned off-line. New design and fabrication techniques have been applied for production of QWRs which resulted to new record voltages up to 4-5 MV per cavity and low residual resistance of 2-3 nOhm at 2K as was demonstrated in individual cold testing of several QWRs. Primary purpose of the new cryomodule is to increase intensity of accelerated stable ion beams. Beam commissioning will take place at the end of year after substantial modification of the booster area including radiation shielding.

Commercial Applications of Small SRF Accelerators – T.L. Grimm (Niowave, Inc.)
Niowave, Inc. has developed complete turn-key superconducting electron linacs for a broad range of commercial applications. In addition to the niobium accelerating structure, the complete system includes the liquid helium refrigerator, high power microwave source, radiation shielding and licensing from the Nuclear Regulatory Commission. This integrated system enables a company or university research group to quickly and inexpensively use the electron beam for a number of applications, including high-power x-ray sources, production of medical radioisotopes, and high-power free-electron lasers. Superconducting technology allows the linac to operate continuously with higher average beam intensity (current) than any other type of accelerator (cyclotron, copper linac, etc.). Linacs with beam energy of 0.5 to 50 MeV and average beam power of 1 W to 1 MW are under development, and two integrated helium refrigerator models have been developed with leading experts in the cryogenic industry. This contribution will discuss these integrated accelerator systems.
Ion Implantation: The Largest Use of Industrial Accelerators – S.B. Felch (Susan Felch Consulting)
M.I. Current (Current Scientific) M.C. Taylor (Taylor Consulting)
The implantation of ion beams into materials, primarily semiconductors, is by far the largest industrial accelerator application, with more than 10,000 systems having been sold for this purpose during the past 30 years. This talk should review the status of this very large application.

Electron Beam Irradiation Applications – S. Sabharwal (IAEA)
The irradiation of materials with electron beams or X-rays is used extensively to enhance or modify their physical, chemical, or biological properties. These electron beam "irradiators" cover a very wide range of accelerator technology, beam current and energies to produce a wide variety of products, mostly with polymers. They also are used for curing ink, coatings, and adhesives, as well as for the sterilization of medical products, disinfection and preservation of food. The emerging applications include treatment of waste waters and flue gases, and degradation of plastics for use in coating and inks. The status of applications and role of IAEA in enhancing these will be presented.

This presentation should provide an overview of the latest developments on the technologies of low energy electron linacs and their applications at cargo inspection, irradiation for quarantine, and so on.

Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade – J. Hogan, M.A. Drury, L. Harwood, C. Hovater (JLAB) A. Burrill (HZB) C.E. Reece (JLab)
The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is nearing completion of an energy upgrade from 6 to 12 GeV. An integral part of the upgrade is the addition of ten new cryomodules, each consisting of eight seven-cell superconducting radio-frequency (SRF) cavities. An average performance of 100+MV of acceleration per cryomodule is needed to achieve the 12 GeV beam energy goal. The production methodology was for industry to provide and deliver the major components to Jefferson Lab, where they were tested and assembled into cryomodules. The production process begins with an inspection upon receiving of all major components followed by individual performance qualification testing. The SRF cavities received their final chemical processing and cleaning at Jefferson Lab. The qualified components along with all associated hardware and instrumentation are assembled, tested, installed into CEBAF and run through an integrated system checkout in preparation for beam operations. The production process is complete and one of the first completed cryomodules has successfully produced 10^9 MV of acceleration with a linac beam current of 465 uA.
Advances in SRF Materials Science aimed at High Q Cavities – A. Grassellino (Fermilab)

Several SRF accelerators worldwide target continuous wave operation at medium accelerating gradients. Examples include light sources, ERLs, Project X, accelerator driven systems and more. For these machines cryogenic losses dominate and therefore the quality factors of the SRF niobium cavities has a large impact on capital and operating costs. In this talk we will present the state of the art R&D in surface processing for maximization of quality factors in SRF niobium cavities, with consideration regarding different operating frequencies and temperature.

SRF Cavities Beyond Niobium: Potential and Challenges – S. Posen, M. Liepe (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)

After many years of development, current preparation methods for niobium SRF cavities regularly achieve performance levels very close to the fundamental limitations of the material. Continued progress requires looking to alternative superconductors, but fabricating a high quality RF surface from these materials has proven uniquely challenging. In this talk, I will discuss the worldwide progress towards fabricating SRF cavity surfaces with alternative materials such as Nb3Sn, NbN, and MgB2. I will also discuss thin films and multilayer films of alternative materials, proposed as an alternative to bulk superconductors. I will present an improved theoretical understanding of the potential of such films. I will discuss new results and make suggestions for future directions beyond niobium.
WEODA — Contributed Oral Presentations, Accelerator Technology
Chair: P. Ferracin (CERN)

WEODA1 16:00

SuperKEKB are now being constructed with a target luminosity of 8×10^{35} which is 40 times higher than KEKB. This luminosity can be achieved by the "Nano-Beam" scheme, in which both beams should be squeezed to about 50 nm at the beam interaction point, IP. The superconducting magnet system has been designed in order to attain high luminosity. The system consists of 8 superconducting quadrupoles, 4 superconducting solenoids and 43 superconducting correctors. The magnets are installed into two cryostats in the interaction region, IR. For each beam, the final focusing system consists of quadrupole-doublets with 8 superconducting quadrupoles. To reduce the beam emittance at the IP, the superconducting solenoids cancel the integral solenoid field of the particle detector, Belle II, on the beam lines. The corrector system is very complicated and the multi-layered coils are mainly assembled inside of the quadrupole bores. In the paper, we would like to describe the most updated design of the superconducting magnet system for the SuperKEKB IR.

WEODA2 16:15

Rapid Cycling Dipole Magnet — H. Witte, M. Anerella, J.S. Berg, P. Kovach (BNL), M.L. Lopes (Fermilab)

One option for acceleration Muons from 30 to 750 GeV is to use a rapid cycling synchrotrons with frequencies of 400-550 Hz. A lattice has been proposed which employs 8T, 4.2 m long superconducting dipole magnets which are interleaved with 1.8T, 7.5 m long normal conducting dipoles. The present design of the normal conducting dipoles for this lattice is based on grain oriented steel, which possesses good magnetic properties in the direction of the grains. Grain oriented steel however is highly anisotropic, which can potentially lead to field quality problems. In this paper we present an alternative design, which suggests lower losses, a higher peak field and better field quality.

WEZB — Invited Oral Presentation, Industrial Accelerators and Applications
Chair: S. Charisopoulos (International Atomic Energy Agency, Physics Section, Div. Physical and Chemical Sciences)

WEZB1 14:00

The Illinois Accelerator Research Center — R.D. Kephart (Fermilab)

The Illinois Accelerator Research Center (IARC) is a state-of-the-art facility being built at Fermilab to develop cutting-edge accelerator technologies in collaborations with private industrial partners. The center will also collaborate with local universities to serve as a training facility for a new generation of scientists, engineers and technical staff in accelerator technology.
Development of THz-TDS System on the Basis of the S-band Compact Electron Linac – R. Kuroda (AIST)

The terahertz (THz) radiation is a useful tool for progressing on security field. Especially, THz time-domain spectroscopy (THz-TDS) has recently emerged as a powerful probe for the investigation of various dangerous materials such as explosives. A high power THz source has been developed on the basis of the S-band compact electron linac at AIST. The THz pulse is generated with coherent radiation using ultra-short electron bunch with bunch length of less than 0.5 ps (rms) and energy of around 40 MeV. The THz pulse is detected by Electro-Optical (EO) sampling method with a ZnTe crystal like the pump-probe technique. The THz temporal waveform can be measured using the probe laser. The spectrum and the phase information of the sample is calculated by the Fourier Transform of the obtained waveform. In this conference, we will talk about details of our system and results of THz-TDS experiments.

Development of a Time-tagged Neutron Source for Imaging with Enhanced Spatial Resolution – T. Schenkel, Q. Ji, B.A. Ludewigt, W.L. Waldron (LBNL)

Associate particle imaging (API) is an active interrogation method for neutron based imaging of materials. Energetic alpha particles are emitted in kinematic correlation with neutrons in DT fusion reactions, forming a virtual neutron beam. When alphas are detected in a position sensitive detector and their arrival time is also recorded then time tagged neutrons can be used for 3D imaging e. g. of concealed objects in a transmission geometry or through detection of a prompt gamma ray. The imaging resolution in API systems is often limited by the area from which neutron originate. This area is determined by the spot size of a mixed D+ and T+ ion beam. We have adapted microwave driven ion sources (permanent magnets, 2.45 GHz) for the efficient production of hydrogen ions (all isotopes) with high current density (50 to 100 mA/cm²) and high fractions of atomic ions [1]. The high current density allows us to extract ions with small apertures and form beam spots on the neutron production target of less than 1 mm in diameter. In our presentation we will describe the API principle and report our results on the development of an API system with high spatial resolution.
Diagnostic Proton Computed Tomography using Laser-driven Ion Acceleration – K.E. Woods, S. Boucher (RadiaBeam) V.A. Bashkirov, R.W. Schulte (LLU/MC) B.M. Hegelich (The University of Texas at Austin)

Although the growing utilization of computed tomography (CT)-based imaging has led to major advances in diagnostic capabilities, it has also resulted in higher cumulative radiation doses to patients. In order to fully exploit the benefits of high-resolution diagnostic CT scans while minimizing the risks of radiation-induced cancer, the realization of low-dose CT is crucial. Recent research has shown that the use of protons, rather than X-rays, for CT has the potential to greatly reduce the radiation dose delivered to the patient without reducing image quality. RadiaBeam Technologies, in collaboration with the Loma Linda University Medical Center and the University of Texas at Austin, is proposing the development of a proton CT scanner utilizing laser-driven ion acceleration (LDIA) techniques. The initial design of this system is presented.

Angiography is one of the most reliable and contemporary radiography procedures of the vascular system imaging. X-ray spectrums provided by all modern medical angiographs are too broad to acquire high contrast images and provide low radiation dose at the same time. The new method of narrow X-ray spectrum achieving is based on the idea of channeling radiation applications[1]. The X-ray polycapillary optics used in this method allows eliminating the high energy part of the spectrum and providing dramatic dose reduction. The scheme of the facility including the X-ray filter is discussed. The results of the spectrum analysis for the channeling radiation source and typical angiography X-ray tube are discussed. Doses obtained by the water phantom and contrast of the iodine agent image are also provided for both cases.

WEODB1 16:00
New Method for Point-Charge Wakefield Calculation
– B. Podobedov (BNL) G.V. Stupakov (SLAC)
Extending our approach recently described in [1] we present a new method to accurately calculate point-charge geometric wakefields from wake potentials due to a much longer bunch, typically obtained with a time-domain EM field solver. By allowing a long bunch in the EM solver, this method can significantly reduce the need for computer resources as well as drastically shorten the computing time. On top of that, the method provides profound physics insights. We give examples of longitudinal and transverse wakefield calculations for 2D and 3D accelerator structures which illustrate the effectiveness of the new method.

WEODB2 16:15
Space Charge Models for Particle Tracking on Long Time Scales – J.A. Holmes, S.M. Cousineau, A.P. Shishlo (ORNL) R.E. Potts (UTK)
In order to efficiently track charged particles over long times, most tracking codes use either analytic charge distributions or particle-in-cell (PIC) methods based on fast Fourier transforms (FFTs). While useful for theoretical studies, analytic distribution models do not allow accurate modeling of real machines. PIC calculations can utilize realistic space charge distributions, but these methods suffer from the presence of numerical diffusion. We examine the situation for particle tracking with space charge over long times, and consider possible ideas to improve the accuracy of such calculations.
THOAA — Contributed Oral Presentations, Industrial Accelerators and Applications
Chair: R.P. Johnson (Muons. Inc.)

THOAA1 08:30
Single-Shot Ultrafast Electron Microscopy – R.K. Li, P. Musumeci (UCLA)
Electron microscopy is an extremely powerful tool for a variety of studies in physics, biology, material science, and industrial applications. One of the mostly desired capabilities of a future electron microscopy is the improved resolving power in the time domain approaching ps or even fs levels. In this paper we show that the low emittance, low energy spread electron beams from a state-of-the-art photoinjector can be used to take single-shot intensity-contrast snapshots of the sample. The spatial-temporal resolution can achieve 10 nm – 1 ps level. The beam optics is based on permanent quadrupole magnets which are compact and avoid the high charge density cross-over in contrast to solenoids. The proposed single-shot ultrafast electron microscopy will greatly facilitate the studies of irreversible dynamic process in materials.

THOAA2 08:45
Radioisotope sources are commonly used in a variety of industrial and medical applications. The US National Research Council has identified as a priority the replacement of high-activity sources with alternative technologies, due to the risk of accidents and diversion by terrorists for use in Radiological Dispersal Devices (“dirty bombs”). RadiaBeam Technologies is developing novel, compact, inexpensive linear accelerators for use in a variety of such applications as cost-effective replacements. The technology is based on the MicroLinac (originally developed at SLAC), an X-band linear accelerator powered by an inexpensive and commonly available magnetron. Prototypes are currently under construction. This paper will describe the design, engineering, fabrication and testing of these linacs at RadiaBeam. Future development plans will also be discussed.

THOBA — Contributed Oral Presentations, Accelerator Technology
Chair: R.P. Johnson (Muons. Inc.)

THOBA1 09:00
High-Gradient Metallic Photonic Band-Gap (PBG) Structure Breakdown Testing At 17 GHz – B.J. Munroe, M.A. Shapiro, R.J. Temkin (MIT/PSFC)
Photonic Band-gap (PBG) structures continue to be a promising area of research for future accelerator structures. Previous experiments at X-Band have demonstrated that PBG structures can operate at high gradient and low breakdown probability, provided that pulsed heating is controlled. A metallic single-cell standing-wave structure has been constructed at MIT to investigate breakdown performance of PBG structures with very high surface temperature rise. The MIT standing-wave structure test stand has an available power of 4 MW for a maximum gradient of 130 MV/m; the actual realized gradient may be lower due to breakdown limitations. The MIT test stand will also utilize novel diagnostics, including fast camera imaging and optical spectroscopy of breakdowns.

Pasadena, CA, USA, 29 September–4 October 2013
First Cavity Results from the Cornell SRF Group’s Nb3Sn Program – S. Posen, M. Liepe (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)

As an alternative material for SRF accelerator cavities, Nb3Sn presents two important benefits. Its large Tc gives it a very small surface resistance, leading to a huge reduction in cooling costs; and its predicted Hsh of nearly 400 mT would allow for very high gradients and therefore fewer cavities in high energy linacs. Researchers in the Cornell SRF group have recently fabricated two 1.3 GHz cavities coated with Nb3Sn. Testing of these first cavities has produced encouraging results, including a very high Tc and some very high performing regions. These cavity results as well as new sample results under TEM will be presented.

Completion of the First SSR1 Cavity for PXIE and First Jacketed Tests – L. Ristori (Fermilab)

Fermilab is in the process of constructing a proton linac to accelerate a 1 mA CW beam up to 30 MeV to serve as a test beam for the Project X Injector Experiment (PXIE). The major goals of PXIE are the validation of the Project X concept and mitigation of technical risks. The SSR1 cryomodule comprises the last portion of PXIE and contains 8 SSR1 cavities operating at 325 MHz with an optimal beta of 0.22. In this paper we present the lessons learned from the completion of the first cavity including the welding operations necessary to install the Nb-SST transition ring and the SST helium jacket. The results of various tests on the jacketed resonator are also presented.

Development of Yb Laser For High Power Ultra-Short Pulse – Y. Matsumura, K. Koyama (University of Tokyo), M. Uesaka (The University of Tokyo, Nuclear Professional School) M. Yoshida, X. Zhou (KEK)

Passively mode-locked Yb lasers can easily generate femtosecond pulse at high repetition rate. The Yb lasers also have a property of high efficiency, which enables us to obtain high power laser. Because of these characteristics, the Yb lasers have been applied to many fields such as optical frequency comb and X-ray generation. Now, femtosecond pulse of much higher energy at high repetition rate is being required for dielectric laser accelerator (DLA) and lasertron. We have developed high power mode-locked Yb laser, and achieved 20W mode-locked Yb fiber laser amplification system at repetition rate of 62MHz. At the conference, our latest results will be reported.

THYAA1 — Invited Oral Presentations, Alternative Acceleration Schemes

Chair: M.J. Hogan (SLAC)

Latest Laser Plasma Acceleration Results from the BELLA Facility – W. Leemans (LBNL)

The BELLA Project was formally launched and funded in 2009 by the Department of Energy, Office of High Energy physics to develop a new laser facility for forefront experiments on laser plasma acceleration at LBNL. The laser specifications were determined by relying on previous experiments that showed GeV electron beams and simulations. The BELLA laser can operate at peak power levels on the order of a Petawatt with a record setting repetition rate of 1 Hz for such a class of laser. Experiments have started in early 2013 and are aimed at studying the interaction of intense laser pulses in both gas jet and capillary discharge based plasma sources with a goal to obtain multi-Gev beams from structures that are less than a meter in length.

SLAC’s new FACET facility had its second user run in April–June, 2013. Several new milestones were reached during this run, including the achievement of beam-driven plasma wakefield acceleration of a discrete witness bunch for the first time, and energy doubling in a noble gas plasma source. The FACET beam is a 20 GeV electron bunch with a charge of 3.2 nC that can be compressed and focused to a size of 20 μm × 20 μm × 20 μm rms. To create the two-bunch, drive/witness beam structure, a chirped and over-compressed beam was dispersed horizontally in a chicane and a bite was taken from its middle with a tantalum finger collimator, corresponding to a longitudinal notching of the beam due to the head-tail energy correlation. A new 10 terawatt Ti:Sapphire laser was commissioned and used during this run to pre-ionize the plasma source in order to increase the efficiency of energy transfer from the beam to the wake. Ultimately, a witness beam of hundreds of pC in charge was accelerated by a drive beam of similar charge in a pre-formed lithium plasma with a density of 5 × 10^{16} cm^{-3}, experiencing gradients reaching several GeV/m in magnitude.

Dielectric Wakefield Acceleration and Tests in the BNL ATF and SLAC FACET Facilities – S.P. Antipov (Euclid TechLabs, LLC)

In this presentation we will review Dielectric Wakefield Acceleration (DWA) methods and related concepts. Recent results obtained at SLAC FACET, BNL ATF and other facilities will be presented and possible applications outlined.

Recent PWFA results at FACET at the SLAC National Accelerator Laboratory have shown a correlation between ionization-injected electrons and the betatron x-ray yield. PWFA experiments were carried out using a rubidium vapor heat pipe oven. The vapor density was 2.5x10^{17} cm^{-3} and was ionized by the electron beam via tunneling ionization. Injection of plasma electrons into the wake can limit the wake amplitude and deplete the accelerating gradient. Here, the source of injection and beam loading is the ionization of the second Rb electron. The amount of injected charge and x-ray yield are expected to be a function of the beam envelope oscillations where at the oscillation minima, the field of the beam is strong enough to ionize RbII, and at the oscillation maxima, the beam electrons radiate x-rays. For a matched beam, there is no
beam oscillation and the x-ray yield is much lower. Thus, the x-ray yield and unwanted beam loading are greatly reduced. The FACET x-ray diagnostic can be used to tune the drive beam parameters for matched propagation in the plasma by minimizing the x-ray yield. Minimizing the x-ray yield should also reduce unwanted beam loading from secondary electrons.

Laser-plasma accelerators (LPAs) have produced GeV electron beams (e-beams) from cm-scale devices, demonstrating that LPAs have great potential for reducing accelerator size and cost. We present recent progress on the experiment staging two LPA modules at the LOASIS Program at Lawrence Berkeley National Laboratory. The experiment utilizes a 40 TW class laser which is split into two laser pulses. The first laser drives the first LPA module to produce an e-beam. The second laser drives the second LPA module and accelerates the e-beam from the first LPA. Excited wakefields in the second LPA module are diagnosed through spectral redshifting of the drive laser, which is an indicator of the efficiency of laser energy transfer into the plasma through the generation of coherent plasma wakefields.

raster-scanned flat-topped round or square intensity distributions deposited over targets with 40 - 100 mm maximum dimensions. Diagnostics include New Parametric Current Transformers, graphite water-cooled electrically-isolated collimators with readbacks, and a low-power sapphire beam profile monitor for macro-pulsed beams (∼100 micro-second wide pulses at low frequency). This paper describes the specialized: beam-optics, device designs, intensity distributions, and also the latest commissioning results.

THOAB2 09:45

Large Momentum Acceptance Superconducting NS-FFAG Gantry for Carbon Cancer Therapy – D. Trbojevic, B. Parker (BNL)

Carbon cancer radiation therapy has clear advantages with respect to the other radiation therapy treatments. Cost of the ion cancer therapy is dominated by the delivery systems. An new design of the superconducting Non-Scaling FFAG (NS-FFAG) carbon isocentric gantry is presented. The magnet size and weight is dramatically smaller with respect to other gantries in cancer therapy treatment. The weight of the transport elements of the carbon isocentric gantry is estimated to be 1.5 tons to be compared to the 130 tons weight of the top-notch Heidelberg facility gantry.

THYAB — Invited Oral Presentations, Medical Accelerators and Applications

THYAB1 10:30

Where is Medical Accelerator Technology Headed and How Will Accelerator Technology in Medical and Particle Beam Therapy Impact Health Care Costs? – W. Kaissl (VMS-PT)

This presentation should cover what the speaker views as the future for ion beam therapy. How does the speaker view the impact of the expansion of large accelerators into medicine? Will economies of scale drive costs down or will particle beam therapy be a niche modality and remain relatively expensive? Will improvements in technology lower costs and increase effectiveness or are there inherent limits to localized radiation therapy that preclude dramatic increases in effectiveness(survival)? How does any of this impact the overall cost of health care (industrial versus developing countries)?

THYAB2 11:00

The US Carbon Therapy Initiative – D. Robin (LBNL)

This presentation will summarize the findings of a joint DOE-NIH workshop to be held in early January 2013, outlining technical, clinical, and radiobiological issues key to establishing carbon therapy. This workshop is being commissioned as part of an initiative to restart the US hadron therapy program after many years' hiatus.

THYBB — Invited Oral Presentations, Medical Accelerators and Applications

THYBB1 11:30

Prospects for Cyclotrons from Protons to Carbon for Hadron Therapy – Y. Jongen (IBA)

This presentation should cover the perspectives of cyclotrons for protons to Carbon 12 hadron therapy. Presently the majority of proton facilities use cyclotrons. However only synchrocyclotrons are used for heavier ions. What is the status of cyclotron development for heavier particles? Isochronous versus synchrocyclotrons? Raster scanning? Comparison with conventional synchrotrons?
Cyclotron Production of Positron Emitting Radioisotopes – S.E. Lapi (Washington University Medical School)

This presentation will provide an overview of standard methods and modern trends in isotope production for positron emitters for use in medical imaging. This will include production routes, separation chemistry and examples of applications.

Low Energy Fusion for a Safe and Compact Neutron Source – S.C.P. Albright, R. Seviour (University of Huddersfield) R. Seviour (Lund University)

Neutrons are primarily produced at large international facilities using either spallation reactions or nuclear fission. There is a demand for small scale neutron production for use at hospitals and borders for a variety of applications. Isolated fission sources and sealed tube deuterium-tritium fusors are able to provide a reliable neutron flux at small scale but are impractical due to the associated radioactivity. A beam of protons or deuterons accelerated onto a thin target will undergo a fusion reaction resulting in the emission of a quasi-monochromatic neutron beam. The total flux and energy spectrum of the neutrons produced through fusion is primarily dependent on target material, target thickness, beam energy and projectile. The use of neutrons for security screening at border crossings, ports and airports has the potential to drastically improve threat detection and contents verification. Monte Carlo code MCNPX is being used to investigate the most suitable target and beam characteristics for a neutron source for security applications.

Accelerator-based Neutron Damage Facility using LEDA – N. Pogue, S. Assadi, P.M. McIntyre, A. Sattarov, P.V. Tsvetkov (Texas A&M University)

An accelerator based neutron damage facility (AND) is proposed to generate a high-dose fast neutron flux for testing of advanced reactor materials. The facility will be implemented in two stages. In AND-1, the 350 MHz LEDA RFQ will be re-commissioned to deliver 100 mA CW proton beam at 6.5 MeV. The beam will be targeted on a sheet-flow Li target to produce fast neutrons. Samples located at a target station behind the sheet flow will receive up to 10 dpa/year of neutron damage with a mean neutron energy of 1.75 MeV. In AND-2, the LEDA beam will be modulated and passed through a spectrometer to produce three 117 MHz bunch trains, and two of them will be injected to two 100 MeV strong-focusing cyclotrons (SFC). The beams extracted from the two cyclotrons will be targeted in opposite directions onto sheet-flow Pb targets. Samples located in the space between the two targets will receive ~140 dpa/year of fast neutron damage with mean neutron energy ~10 MeV. AND-1 and AND-2 will provide the fast neutron flux needed for life-cycle damage studies for advance reactor technologies and for first-wall simulations for fusion systems.
Next Generation of Radiobiology Experiments –

P.A. Posocco, S.H. Tsang (Imperial College of Science and Technology, Department of Physics) H. Larose (The Imperial College of Science, Technology and Medicine)

Proton Therapy (PT) is a well-established cancer treatment, which has helped more than 10,000 patients in the world in the last year alone. The outcomes are very positive and for most patients PT yields much better results in terms of morbidity and tumour control than conventional Radio Therapy, because with protons it is possible to control more precisely the energy deposition inside the tumour. However, the understanding of the interaction between radiation and cells is fundamental to fully exploit this aspect, and therefore in-vitro and in-vivo experiments comparing the effect of protons and photons need to be carried out. In this paper we will critically explore the options provided by the research groups and facilities operating in this field and we will be compiling a list of desiderata for the next generation of accelerators used for these experiments.

Development of Low Energy Accelerator-Based Production of Medical Isotopes –

N. Ratcliffe, R.J. Barlow, R. Cywinski (University of Huddersfield) P. Beasley (Siemens AG, Healthcare Technology and Concepts)

Here we present methods for production of new and existing isotopes for SPECT (Single Photon Emission Computed Tomography) imaging using accelerator-based systems. Such isotopes are already widely used in medical diagnostics and research, and there is constant development of new drugs and isotopes. However the main production method for Tc-99m is currently in research reactors and is at risk due to scheduled and unscheduled shut downs. Therefore, a low cost an alternative accelerator-based system could provide many advantages. Various compact low energy proton machines are being proposed to enable cheap and accessible production: here we present a discussion of potential new SPECT isotopes and simulations of suitable targets for their manufacture.
An Overview of Lie Methods for Accelerator Physics – A. Dragt (UMD)

This talk will sketch how Hamiltonian mechanics can be formulated in Lie algebraic terms (indeed Poisson and Jacobi almost invented Lie algebras without knowing it), and how this formulation can be applied to the description and computation of particle orbits in accelerators in a way that both unifies both linear and nonlinear theory and leads to explicit results for realistic machines.

Perspectives on Beam Driven Plasma Acceleration: How We Got Here and Where Might We Be Going? – M.J. Hogan (SLAC)

This talk is a review of the past and future of beam-driven plasma acceleration.

Field Dependent Losses in Superconducting Niobium Cavities – A. Grassellino (Fermilab)

In this presentation I will report the investigation of superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small grain 1.3 GHz radio frequency (RF) single cell niobium cavities. The RF test of these cavities was accompanied by full temperature mapping to characterize the RF losses in each of the samples. An interesting correlation is found between high field RF losses and field dependence of the sample magnetic volume fraction measured via muSR, suggesting an important role of magnetic flux motion and surface pinning in the high RF field cavity losses.

The Quest for Bright Coherent X-rays: A Personal Story – K.-J. Kim (ANL)

This presentation will include stories associated with the author's work on the development of bright x-rays from the third generation sources and x-ray free-electron lasers.

Advanced Modeling of Beams and Accelerators – J.-L. Vay (LBNL)

Computer modeling of beams and accelerators has had a profound impact on the design and operations of modern particle accelerators, and its importance is growing with the development of more powerful computers and codes. The development and application of such codes have become extremely complex and specialized endeavors, and the complexity is about to reach new heights with the rise of heterogeneous many-core hardware. The breadth and depth of computational accelerator science and technology are both widening (trend toward multi-physics models with realistic geometry at full scale) and deepening (more sophisticated software on more complex architecture), calling for the development of teams of specialists including computational physicists, applied mathematicians and computer scientists. The importance and complexity of computer modeling of accelerators will be highlighted by examples of simulations of laser plasma accelerator stages, including recent advances in the application of the Lorentz boosted frame technique*.

Space charge, especially in the beam source and low energy regions, can substantially impact the dynamics of advanced accelerators at the intensity frontier. UMER uses scaled electron beams at nonrelativistic energies (10 keV) to inexpensively access the intense space charge dynamics directly relevant to low-energy hadron and ion beams, in both rings and linacs. In UMER, space charge tune depressions at injection are adjustable in the range of 0.14 - 0.8, enabling scaled examination of a wide range of phenomena. Longitudinal induction focusing is used to counteract the space charge force at the edges of a long rectangular bunch, confining it for 100s of turns. This paper reviews recent experimental, computational, and theoretical research on UMER. Specific topics include longitudinal induction bunch-end focusing; generation and propagation of longitudinal space charge waves, including large-amplitude solitons; bunch end inter-penetration and observation of a resulting multi-stream instability; beam halo studies; beam current-dependence of classical ring parameters (natural chromaticity, lattice dispersion and momentum compaction); and diagnostic development.

Transverse Beam Transfer Functions via the Vlasov Equation – M. Blaskiewicz, V.H. Ranjbar (BNL)

A semi-numerical method of integrating the Vlasov equation to obtain beam transfer functions directly as a function of frequency is presented. The results are compared with beam transfer functions calculated via particle tracking and excellent agreement is shown. The technique works well with both transverse wakes and detuning wakes from space charge.

Control of Intrabunch Dynamics at CERN SPS Ring using 3.2 GS/s Digital Feedback Channel – C.H. Rivetta, J.M. Cesaratto, J.D. Fox, K.M. Pollock, O. Turgut (SLAC) H. Bartosik, W. Höfle, G. Kotzian, K.S.B. Li (CERN)

The feedback control of intra-bunch instabilities driven by electron-clouds or strong head-tail coupling requires bandwidth sufficient to sense the vertical position and apply correction fields to multiple sections of a nanosecond-scale bunch. These requirements impose challenges and limits in the design of the feedback channel. We present experimental measurements taken from CERN SPS machine development studies with an intra-bunch feedback channel prototype. The performance of a 3.2 GS/s digital processing system is evaluated, quantifying the effect of noise and limits of the feedback channel in the bunch stability as well as transient and steady state motion of the bunch. The controllers implemented are general purpose 16 tap FIR filters and the impact on the bunch stability of controller parameters are analyzed and quantified. These studies based on the limited feedback prototype are crucial to validate reduced models of the system and macro-particle simulation codes including the feedback channel. These models will allow us predicting the beam dynamics and controller limits when future wide-band hardware is installed in the final prototype to stabilize multiple bunches.
Simulation Study on Transverse Laser Cooling and Ordering of Heavy-Ion Beams in a Storage Ring — Y. Yuri (JAERI/TARRI)

Molecular dynamics approach in which stochastic interaction between laser photons and ions is incorporated is employed to study the formation of three-dimensionally ultralow-temperature coasting beams by means of laser cooling in a storage ring. The effect of momentum dispersion on the laser-cooling process is investigated for efficient transverse cooling through tapered cooling and resonant coupling. The indirect transverse cooling force is dependent on the displacement of the laser axis and laser detuning as well as on dispersion. A string-like crystalline state of the beam can be attained at low line density by means of three-dimensional (3D) cooling. On the other hand, 3D ordered structures can be formed at higher line density by adjusting the tapered laser-cooling force. The characteristics of Coulomb-ordered beams are discussed.

Particle Motion in a System with a Strong Longitudinal Magnetic Field — V.B. Reva (BINP SB RAS)

Motion of electrons in a low energy electron cooler is usually described in the drift approximation. A magnetic field non-uniformity becomes more essential with electron energy increase breaking condition of the drift approximation usage. The paper considers a description of particle motion based on a decomposition of the Hamiltonian into two parts presenting the fast and slow motions. The suggested method enables a generalization of the classical drift approach resulting in simple Hamiltonians for each motion type. For small longitudinal field the coupling term in the Hamiltonian between two modes is essential and needs to be taken into account. The concept is illustrated with the COSY 2 MeV electron cooler.

SNS Performance and the Next Generation of High Power Accelerators — J. Galambos (ORNL)

The SNS accelerator at ORNL has been operating near the MW level for several years now. This presentation will discuss the successes and challenges, new insight gained and lessons learned with regard to the operation of a modern high power accelerator. In particular, issues with the RFQ, the target and the superconducting RF linac will be discussed.

ESS Status and Design Considerations — M. Lindroos (ESS)

The European Spallation Neutron Source project includes a 5 MW superconducting linac, and aims for initial operation at 1.5 MW in 2019 with 5 MW capacity installed for 2023. Design considerations including the work done to find the minimum cost for preserved beam quality at low beam loss will be discussed. This will include a discussions on lessons learnt from SNS regarding e.g. superconducting RF performance and RF power sources. The design and construction plans and status will be described including a description of how in-kind and contingency will be managed.

The Facility for Rare Isotope Beams (FRIB) is based on a continuous-wave superconducting heavy ion linac to accelerate all the stable isotopes to above 200 MeV/u with a beam power of up to 400 kW. At an average beam power approximately two-to-three orders-of-magnitude higher than those of operating heavy-ion facilities, FRIB stands at the power frontier of the accelerator family - the first time for heavy-ion accelerators. To realize this innovative performance, superconducting RF cavities are used starting at the very low energy of 500 keV/u, and beams with multiple charge states are accelerated simultaneously. Many technological challenges specific for this linac have been tackled by the FRIB team and collaborators. Furthermore, the distinct differences from the other types of linacs at the power front must be clearly understood to make the FRIB successful. This report summarizes the technical progress made in the past years to meet these challenges.

FRYBA2 12:00 Status of the ReAccelerator facility ReA for rare isotopes – D. Leitner, T. Baumann, B. Durickovic, A. Lapierre, J.A. Rodriguez, S. Schwarz, C. Sumithrarachchi, S. Williams, W. Wittmer (NSCL) X. Wu (FRIB)

The Facility for Rare Isotope Beams (FRIB) is currently in the preliminary design phase at Michigan State University (MSU). FRIB consists of a driver linac for the acceleration of heavy ion beams, followed by a fragmentation target station and a ReAccelerating facility (ReA). While FRIB is expected to start commissioning in 2017, the first stage of ReA called ReA3 is already under commissioning and was coupled to the Coupled Cyclotron Facility in 2012. Once FRIB is completed ReA will continue operation as post-accelerator facility for FRIB. ReA consists of a gas stopper, an Electron Beam Ion Trap (EBIT) charge state booster, a room temperature radio frequency quadrupole (RFQ), a LINAC using superconducting quarter wave resonators, and an achromatic beam transport and distribution line to a new experimental area. An overview of the facility will be discussed. In particular, this talk will focus on the technical progress and commissioning results using pilot beams from the off-line ion source and charge bred beams from the online EBIT injector.

FRTB1 08:30 Femtosecond Timing and Synchronization of Laser Systems for Accelerators – J.C. Frisch (SLAC)

This tutorial should describe the challenges and demands in timing and synchronization for accelerators, with an emphasis on femtosecond timing of laser systems. The tutorial should describe the wide variety of timing and laser timing challenges and system approaches.

New developments at HIMAC include a superconducting carbon gantry, a new therapy area with three new treatment rooms, and substantial enhancements to the synchrotron extraction system to enable energy-variation within a synchrotron cycle to match characteristics of the gantry and three-dimensional raster scanning. This carbon gantry equips ten combined-function superconducting magnets, allowing us to design the compact gantry; the length and the radius of the gantry will be approximately 13 and 5.5 m, respectively, which are comparable to those for the existing proton gantries. Further, these superconducting magnets were designed to provide the fast slew rate of the magnetic field for the energy-variation operation of the synchrotron. The fabrication of the superconducting magnets has been made, and field measurements of the several magnets were performed. In this talk, the design of the superconducting gantry including the magnet design and results of the field measurements will be presented.

Review of Superconducting Magnet (LTS and HTS) Developments for Accelerator Applications – P. Ferracin (CERN)

This presentation will focus on superconducting magnet developments needed by future accelerators/colliders at the energy frontier. A review of the various technologies based on LTS and HTS materials will be provided, outlining their capabilities and applications as well as the challenges and critical issues which will have to be addressed by specific R&D.

Protection of High-field Superconducting Magnets – H. Felice (LBNL)

As superconducting accelerator magnets see the increase of their magnetic field and stored energy, quench protection becomes a critical part of magnet design. Understanding the quench phenomenon requires a multidisciplinary approach combining magnetic, electrical and thermal analysis. Numerical codes are key components of this process. Due to the complexity of the topic, and because multiphysics approach might lead to long computational times, a frequent technique relies on breaking down the problem, using dedicated tools for each physical phenomenon and interfacing the results. We propose here an overview of the various aspects of the magnet protection, and we will address the way the community is presently addressing the challenge of quench protection simulation.
FRYBB — Invited Oral Presentations, Accelerator Technology

Chair: A.M.M. Todd (AES)

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation Title</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30</td>
<td>Progress on Superconducting Undulators</td>
<td>Y. Ivanyushenkov (ANL)</td>
</tr>
<tr>
<td>12:00</td>
<td>Development and Operation of the SNS Fast Chopper Systems</td>
<td>R.B. Saethre (ORNL RAD) D.E. Anderson, C. Deibele, V.V. Peplov, M.P. Stockli (ORNL)</td>
</tr>
</tbody>
</table>

FRZAP — Invited Oral Presentation, Industrial Accelerators and Applications

Chair: A. Chao (SLAC)

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation Title</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Current & Future Industrial Applications of Accelerators</td>
<td>R.W. Hamm (R&M Technical Enterprises)</td>
</tr>
</tbody>
</table>
Challenges and Opportunities for X-ray Free Electron Lasers – C. Pellegrini (SLAC) C. Pellegrini (UCLA)

This talk should present an overview of the technical challenges for delivering coherent beams of X-rays, and opportunities for new FEL designs. Topics to be discussed include increased repetition rate, higher flux per pulse, temporal control and coherence, and undulator developments.
03 Alternative Acceleration Schemes

MOPAC05 Emittance Dynamics of Ionization-induced Injection in Plasma Based Accelerators – X.L. Xu, J.F. Hua, F. Li, W. Lu (TUB) C. Joshi, W.B. Mori (UCLA)

MOPAC06 Study of Beam Break-up Control for a THz Dielectric Wakefield Linac – C. Li, W. Gai, C.-J. Jing, J.G. Power (ANL) C.-J. Jing (Euclid TechLabs, LLC) C. Li (TUB)

MOPAC07 Photonic Crystal as a Passively Driven Structure to Boost Beam Energy – B.R. Poole (LLNL), J.R. Harris, S.V. Milton (CSU)

MOPAC09 Coupling to Photonic Crystal Fiber Accelerator Structures – G.R. Werner, C.A. Bauer, J.R. Cary (CIPS) J.R. Cary (Tech-X)

MOPAC10 Long Term Evolution of Plasma Wakefields – A. A. Sahai, T.C. Katsouleas (Duke ECE) W.B. Mori, ES. Tsung (UCLA)

MOPAC13 Luminosity Limitations in Plasma-Based Collider Concepts – S. Nagaitsev, V.A. Lebedev (Fermilab)

MOPAC14 Opportunities for Beam-driven-acceleration Experiments at the Fermilab's ASTA Facility – P. Piot (Fermilab)
MOPAC15 ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs of the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications – V.D. Shiltsev (Fermilab) P. Piot (Northern Illinois University)

MOPAC16 Issues and R&D Required for the Intensity Frontier Accelerators – V.D. Shiltsev, S. Henderson, S. Nagaitsev (Fermilab)

MOPAC17 RF-Components Embedded with Photonic-Band-Gap (PBG) and Fishnet-Metamaterial Structures for High Frequency Accelerator Application – Y.-M. Shin (Fermilab) D. Boyden, S. Robak (Northern Illinois University)

MOPAC18 Feasibility Study of Channeling Acceleration Experiment at the Fermilab Advanced Superconducting Test Area (ASTA) – Y.-M. Shin, T. Xu (Northern Illinois University) V.D. Shiltsev, D.A. Still (Fermilab)

MOPAC19 Commissioning and Initial Target Experiments at NDCX-II – T. Schenkel, W.G. Greenway, S.M. Lidia, K. Murphy, W.L. Waldron, C.D. Weis (LBNL)

MOPAC23 Full-scale 2D and 3D Simulations of Electron Beam Acceleration for the LANL Dielectric Wakefield Accelerator Experiment – C. Huang, T.J. Kwan, D.Y. Shchegolkov, E.I. Simakov (LANL)

MOPAC26 Beam Brightness Booster With Ionization Cooling of Superintense Circulating Beams – V.G. Dudnikov, C.M. Ankenbrandt, R.P. Johnson (Muons. Inc.)

MOPAC27 External Injection Into Laser Based Accelerators – D.B. Cesar, P. Musumeci (UCLA)

North American PAC 2013

MOPAC29 Fabrication of an 18 Layer 3D Photonic Crystal for Dielectric Laser Acceleration – C. Lee, R.J. England, Z. Wu (SLAC) M. Qi (Purdue University)

MOPAC30 Multibunch Beam Physics at FACET – S.J. Gessner, M.J. Hogan, M.D. Litos (SLAC)

MOPAC33 Silica Rod Array for Laser-Driven Particle Acceleration – Z. Wu, R.J. England, R.J. Noble (SLAC) E.A. Peralta, K. Soong (Stanford University) M. Qi (Purdue University)

MOPAC34 Impurity Free Ion Beams Accelerated from Over Dense Plasmas Irradiated by 1 TW CO2 Laser Pulses – N.M. Cook, P. Shkolnikov (Stony Brook University) N. Dover, Z. Najmudin (Imperial College of Science and Technology, Department of Physics) C. Maharjan (SBU) I. Pogorelsky, M.N. Polyanskiy, O. Tesca (BNL)

MOPAC35 Full-scale Simulations of Dielectric Grating Accelerator Structures – B.M. Covuan, D.T. Abell, B.T. Schwartz (Tech-X)

MOPAC41 Forward Directed Low-Divergence Electron and Ion Beams from a Gas Jet Irradiated by a Multi-TW CO2 Laser – C. Gong, C. Chandrashekar, J.J. Pigeon, S. Tochitsky (UCLA)

MOPAC44 Development of a High-repetition Rate TW CO2 Laser Driver for a Compact Ion Source – J.J. Pigeon, C. Joshi, S. Tochitsky (UCLA)

05 Beam Dynamics and Electromagnetic Fields

MOPBA01 Current Induced In Vacuum Chamber During NSLS-II Booster Ramp – S.M. Gurov, V.A. Kiselev, S.V. Sinyatkin (BINP SB RAS)

MOPBA02 Simulations of a Dipole Detuned Multi-Harmonic Cavity Structure With Applications to Linear Colliders – L.R. Carver, R.M. Jones (UMAN) J.L. Hirshfield (Yale University, Physics Department) J.L. Hirshfield (Omega-P Inc.) Y. Jiang (Yale University, Beam Physics Laboratory)

MOPBA03 Self-Consistent Simulations of Passive Landau Cavity Effects – G. Bassi, A. Blednykh, S. Krinsky, J. Rose (BNL)

MOPBA04 Polarization Profile and Spin Dynamics Simulations in the AGS Using the Zgoubi Code – Y. Dutheil, L. Ahrens, H. Huang, F. Méot, V. Schoefer (BNL)

04 Hadron Accelerators

MOPBA05 Design of the Injection Line into the INFN Molecular H/ 800 MeV High Power Cyclotron – M. Haj, Y. Dutheil, F. Méot, N. Tsoupas (BNL) L. Calabretta (INFN/LNS) A. Calanna (CSFNSM)

05 Beam Dynamics and Electromagnetic Fields

MOPBA06 Algorithms and Self-consistent Simulation of Beam-induced Plasma in Muon Cooling Devices – V. Samulyak (BNL) M. Chung, A.V. Tollestrup, K. Yonehara (Fermilab) B.T. Freemire (IIT) R.D. Ryne (LBNL)

MOPBA08 Modeling of Electron Cloud Induced Beam Dynamics at CESR TA: An Update – K.G. Sonnad (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education) M.T.F. Pivi (SLAC)

MOPBA09 Advanced Modeling Tools for Muon-Based Accelerators – P. Snopok (Illinois Institute of Technology), J.S. Ellison (IIT) T.J. Roberts (Muons. Inc.)

MOPBA14 Numerical Integrator for Coulomb Collisions – A.A. Al Marzouk, B. Erdelyi (Northern Illinois University)

MOPBA16 A Picard Iteration Based Integrator – H.D. Schaumburg, B. Erdelyi (Northern Illinois University)

MOPBA18 Multipacting Simulation of Accelerator Cavities using ACE3P – C.-K. Ng, L. Ge, C. Ko, Z. Li, L. Xiao (SLAC)

MOPBA19 Inter-bunch Communication through CSR in Whispering Gallery Modes – R.L. Warnock (SLAC) J.C. Bergstrom (CLS) M. Klein (SOLEIL)

MOPBA20 Nonlinear Vlasov Simulation of an FEL in a One-dimensional Model – R.L. Warnock (SLAC)

MOPBA22 Complex Charge Pair Model and Simulations of the FEL Amplifier for Coherent Electron Cooling – I.V. Pogorelov, B.T. Schwartz (Tech-X) D.L. Bruhwiler (CIPS) V. Litvinenko (BNL)

MOPBA24 Integrated Kinetic and Plasma Dielectric Models of Electron Cloud Buildup and TE Wave Transmission – S.A. Veitzer, P. Stoltz (Tech-X) P. Lebrun (Fermilab)
MOPHO05 Coupling and Brightness Considerations for the MAX IV 3 GeV Storage Ring – S.C. Leemann, M. Eriksson (MAX-lab)

MOPHO06 Simulation of Using Orbit Bumps to Test Sextupole Compensation for the Short Pulse X-ray System at the Advanced Photon Source – M. Borland, V. Sajaev (ANL)

MOPHO07 A Seven-bend-achromat Lattice as a Potential Upgrade for the Advanced Photon Source – M. Borland, V. Sajaev, Y. Sun (ANL)

MOPHO08 Various Canting Schemes for Utilizing More Than One Insertion Device in an Insertion Device Straight Section – V. Sajaev, G. Decker, L. Emery (ANL)

MOPHO09 New Consideration for Insertion-Device Dipole-Error Perturbation Requirements when including the Effects of Orbit Feedback – L. Emery, V. Sajaev (ANL)

MOPHO10 Optics Design and Beam Dynamics Optimization of a Five-bend Achromat Lattice for the Advanced Photon Source Upgrade – Y. Sun, M. Borland (ANL)

MOPHO11 Linear scaling on Choosing Bunch Compression Ratio for an FEL Driver – Y. Sun (ANL)

MOPHO12 Simulation of an X-band Hard X-ray FEL with LCLS Injector – Y. Sun (ANL) P. Emma (BNL) T.O. Raubenheimer (SLAC)

MOPHO13 Achieving Quasi Third Order Achromat in APS Upgrade Lattice – Y. Sun, M. Borland (ANL)

MOPHO14 Analytical Evaluation of Correlated Timing Jitter Cancellation in a staged bunch compression system – Y. Sun (ANL)

MOPHO15 X-band FEL Driver Linac Design with Optics Linearization – Y. Sun (ANL) P. Emma (BNL) T.O. Raubenheimer, J. Wu (SLAC)

MOPHO18 CESR Upgrade using Defocusing Dipole Magnets – C.E. Mayes, L. Gupta, G.H. Hoffstaetter, V.O. Kostroun, A.A. Mikhailichenko (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)

MOPHO19 A Tunable Energy Chirp Correction – S.P. Antipov, C.-J. Jing, A. Kanareykin, P. Schoessow (Euclid TechLabs, LLC) S. Baturin (LEIT) M.G. Fedurin (BNL) W. Gai, A. Zhokhont (ANL) V. Yakimenko (SLAC)

MOPHO20 Demonstration of a Compact High Average Power THz Light Source at the IAC – Y. Kim (IAC), A. Andrews, P. Buaphad, C.F. Eckman (ISU) A.V. Smirnov (RadiaBeam)

MOPHO22 Pseudo Single Bunch with Adjustable Frequency: A New Operation Mode for Synchrotron Light Sources – C. Sun, M.P. Hertlein, J. Kirz, G.J. Portmann, D. Robin (BNL)

50 Pasadena, CA, USA, 29 September–4 October 2013

MOPHO27 A Formula of Optimum Out-coupling Fraction for Maximum Output Power in Oscillator FEL – Q.K. Jia (USTC/NSRL)

30-Sep-13 16:30 – 18:00 Poster Poster Area Malibu

MOPMA – Poster Session

04 Hadron Accelerators

MOPMA03 Studies on Short-Bunch Extraction at CSNS RCS – Y. Zou, J.-F. Chen, J.-Y. Tang (IHEP)

MOPMA05 Thermal Design of the FETS Chopper Beam Dump – P. Savage, M. Aslaninejad, P. Grassi, A. Perry (Imperial College of Science and Technology, Department of Physics) S. Mishra (Imperial College of Science and Technology) J.K. Pozimski (STFC/RAL)

MOPMA06 Proposal for Simultaneous Acceleration of Stable and Unstable Ions in ATLAS – A. Perry (ITT) B. Mustapha, P. N. Ostroumov, A. Perry (ANL) A. Perry (Soreq NRC)

MOPMA10 Studies of Fault Scenarios in SC CW Project-X Linac – A. Saini, N. Solyak (Fermilab)

MOPMA12 Design Issues of High Intensity SC CW Ion Linac for Project-X facility. – A. Saini, N. Solyak (Fermilab)

Experimental Results from a Diagnostic Pulse for Single-Particle-Like Beam Position Measurements during Accumulation/Production Mode in the Los Alamos Proton Storage Ring – J.S. Kolski, E. Björklund, M.J. Hall, M.P. Martinez, E.E. Shelley (LANL)

Design Analysis of the New LANL 4-Rod RFQ – S.S. Kurennoy, E.R. Olivas, L. Rybarcyk (LANL)

GPU-accelerated Online Multi-Particle Beam Simulator for the LANSCE Linac – X. Pang, S.A. Baily, L. Rybarcyk (LANL)

Fault Conditions and Recovery Studies for the FRIB Linac – Q. Zhao (NSCL)

Impact of RF Reference Line Stability on the FRIB Linac Performance – Q. Zhao (NSCL)

Design and Simulation of the Argonne Inflight Radioactive Ion Separator – B. Mustapha, M. Alcorta, B. Back, P.N. Ostroumov (ANL)

Beam Dynamics Simulations of SRF Based Electron Cooler for Low Energy RHIC Operation – D. Kayran, S.A. Belomestnykh, I. Ben-Zvi, A.V. Fedotov, V. Litišinenko, I. Pinayev, B. Sheehy (BNL) S.A. Belomestnykh, I. Ben-Zvi, V. Litvinenko (Stony Brook University)

Design and Cold Test of a 17 GHz Overmoded Hybrid PBG Accelerator Cavity – J.X. Zhang, A.M. Cook, B.J. Munroe, M.A. Shapiro, R.J. Temkin (MIT/PSFC)
MOPSM07 Results From the Linac Commissioning of the Rare Isotope Reaccelerator - ReA – W. Wittmer, S.W. Krause, A. Lapierre, D. Leitner, F. Montes, S. Nash, G. Perdikakis, R. Rencsok, S. Schwarz, X. Wu (NSCL) L.Y. Lin, J.A. Rodriguez (FRIB)

MOPSM08 The Electron Counterpart of a Multi-Cavity Proton Cyclotron Accelerator – S.V. Shchelkunov, M.A. Lapointe (Yale University, Beam Physics Laboratory) J.L. Hirshfield (Yale University, Physics Department) J.L. Hirshfield (Omega-P, Inc.) V.P. Yakovlev (Fermilab)

03 Alternative Acceleration Schemes

MOPSM09 Status of Dielectric-Lined Two-Channel Coaxial High Transformer Ratio Accelerator Structure Experiment – S.V. Shchelkunov (Yale University, Beam Physics Laboratory) M.E. Conde, W. Gai, J.G. Power, E.E. Wisniewski (ANL) J.L. Hirshfield (Yale University, Physics Department) J.L. Hirshfield, T.C. Marshall (Omega-P, Inc.) G.V. Sotnikov (NSC/KIPT)
01-Oct-13 16:30 – 18:00 Poster Poster Area Angeles Crest
TUPAC — Poster Session

05 Beam Dynamics and Electromagnetic Fields

TUPAC01 Kinetic Theory of Halo Formation in Charged Particle Beams – W. Simeoni, F.B. Rizzato (IF-UFRGS)

TUPAC03 Beam Transport System for the High Current Injector at IUAC – A. Mandal, D. Kanjilal, S. Kumar, G.O. Rodrigues (IUAC)

TUPAC04 Pre-separator Design of the In-flight Fragment Separator using High-power Beam – J.Y. Kim, D.G. Kim, E.H. Kim, J.-W. Kim, M. Kim, M. Kim, C.C. Yun (IBS)

TUPAC05 Proton Beam Dynamics Simulation at Linac for ADS – V.S. Dyubkov, T.V. Bondarenko, A.V. Samoshin (MEPhI)

TUPAC06 Horizontal Dispersion Studies for the CERN Proton Synchrotron Booster Rings – V. Raginel, S.S. Gilardoni, M.J. McAteer, B. Mikulec (CERN)

TUPAC07 Beam Dynamics and Wakefield Suppression in Interleaved Damped and Detuned Structures for CLIC – A. D’Elia, R.M. Jones, I. Nesmiyan (UMAN)

TUPAC08 Beam-Based Alignment of Sextupoles at the APS – A. Xiao (ANL)

TUPAC09 Serpentine Acceleration with a Generalized Time of Flight – J.S. Berg (BNL)

TUPAC10 Energy Calibration in the AGS Using Depolarization Through Vertical Intrinsic Spin Resonances – Y. Dutheil, L. Ahrens, H. Huang, F. Méot, V. Schoefer (BNL)

TUPAC11 Halo Generation and Control in RHIC – C. Montag, K.A. Drees (BNL)

TUPAC12 A Graphic Interface for Full Control of the RHIC Optics – G. Robert-Demolaize, M. Bai (BNL) X. Shen (Indiana University)

TUPAC13 Trajectories of Low Energy Electrons in Particle Accelerator Magnetic Structures – E.E. Cowan (Syracuse University), K.G. Sonnad (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education) S.A. Veitzer (Tech-X)

TUPAC14 A Linear Envelope Model for Multi-Charge State Linac – Z.Q. He, Z. Liu, J. Wei, Y. Zhang (FRIB) R.M. Talman (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education) A. Visscher (BNL)

TUPAC15 Calculation of the Kick Maps Generated by a Hollow Electron Lens for Studies of High-energy Proton Beam Collimation – G. Stancari, M. Chung, A. Vasiliev (Fermilab) H.-J. Lee (Pusan National University) V. Moens (EPFL)

TUPAC16 A Preliminary Study on Possible Applications of Curved Helical Quadrupole Focusing Channel – W. Wan, L.N. Brouwer, S. Caspi, D. Robin, A. Sessler (LBNL)

Numerical Model and Self-Consistent Simulations of Coherent Synchrotron Radiation in Two and Three Dimensions – C. Huang, B.E. Carlsten, T.J. Kwan (LANL)

Experimental Verification of Dipole Edge Focusing in Linear Model by Operating in the Weak Focusing Regime at the Los Alamos Proton Storage Ring – J.S. Kolski, R.J. Macek, T. Spickermann (LANL)

Coherent Space Charge Tune Shift Measurements in the Los Alamos Proton Storage Ring – J.S. Kolski, R.J. Macek, T. Spickermann (LANL)

Performance Comparisons of Emittance-exchanger Beamlines – C.R. Prokop, P. Piot (Northern Illinois University) B.E. Carlsten (LANL) M.D. Church, P. Piot (Fermilab)

New Modes of Intense Beam Propagation in General Focusing Lattices – H. Qin, R.C. Davidson (PPPL)

Generalized Courant-Snyder Theory for Charged Particle Dynamics in General Focusing Lattices – H. Qin, J.W. Burby, R.C. Davidson (PPPL) M. Chung (Fermilab)

Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources – A.D. Stepanov, R.C. Davidson, E.P. Gilson, L. Grisham (PPPL)

Identification of Intra-Bunch Dynamics using CERN SPS Machine Measurements – O. Turgut, J.D. Fox, C.H. Rivetta (SLAC)

Nonlinear Beam Dynamics Studies of High Intensity, High Brightness Proton Drivers – S. Assadi, P.M. McIntyre (Texas A&M University)

Exploration of Electron Polarization for the MEIC Electron Collider Ring – F. Lin, Y.S. Derbenev, V.S. Morozov, Y. Zhang (JLAB) D.P. Barber (DESY)

Interaction Region Design and Detector Integration at MEIC – V.S. Morozov, P.D. Brindza, Y.S. Derbenev, R. Ent, F. Lin, P. Nadel-Turonski, Y. Zhang (JLAB) C. Hyde (Old Dominion University) M.K. Sullivan (SLAC)

Space Charge Effects in Optical Bunchers – L.V. Ho, J.P. Duris, R.K. Li, P. Musumeci (UCLA)

Nonlinear Accelerator Lattice With Transverse Motion Integrable in Normalized Parabolic Coordinates – T.V. Zolkin (University of Chicago) Y. Kharkov, I.A. Morozov (BINP SB RAS) S. Nagaitisev (Fermilab)

Experimental Detection of Envelope Resonance in a Space-Charge-Dominated Electron Ring – W.D. Stem, B.L. Beaudoin, I. Haber, T.W. Koeth (UMD)
TUPAC33 Measurement of Plasma Wave Speed from Beam End Erosion – D.F. Sutter, B.L. Beaudoin (UMD)

01-Oct-13 16:30 – 18:00 Poster Poster Area Bel Air

TUPBA — Poster Session

01 Colliders

TUPBA01 Exploring the Possibility of High-energy Polarized Electron Beam at BEPCII – Z. Duan, Q. Qin (IHEP) M. Bai (BNL)

TUPBA02 Study of Beam-Beam Effects on Proton Beam Polarization in RHIC – Z. Duan, Q. Qing (IHEP) M. Bai, A.I. Kirleis, V.H. Ranjarb, D. Smirnov (BNL)

TUPBA05 Implementation of Optics Correction on the Ramp in RHIC – C. Liu, A. Marusic, M.G. Minty (BNL)

TUPBA06 Global Optics Correction in RHIC Based on Turn-by-turn Data from ARTUS Tune Meter – C. Liu, M. Bai, M. Blaskiewicz, K.A. Drees, W. Fischer, A. Marusic, M.G. Minty, G. Robert-Demolaize (BNL)

TUPBA07 Maximizing Dynamic Aperture with Head-on Beam-beam Compensation in RHIC – Y. Luo, W. Fischer, S.M. White (BNL)

TUPBA09 Simulation of High Power Mercury Jet Targets for Neutrino Factory, Muon Collider, and Beyond – V. Samulyak, H.G. Kirk (BNL) H.C. Chen (SBU) K.T. McDonald (PU)

TUPBA12 Design of ILC RTML Extraction Lines for the Renovated Two-stage Bunch Compressor – S. Seletskiy (BNL)

Pasadena, CA, USA, 29 September–4 October 2013
TUPBA14 Dynamical Beta Squeeze from 80 to 40 cm at RHIC Top Energy – D. Trbojevic, C. Liu, Y. Luo (BNL)

TUPBA15 eRHIC Interaction Region Design* – D. Trbojevic, E.C. Aschenauer, V. Litvinenko, B. Parker, V. Ptitsyn (BNL)

TUPBA16 Production of Tritium at Zero Cost in Blewett Strong-Focusing Self-Collider – B.C. Maglich, T. Hester (CALSEC) M. Srivinivasan (BARC)

TUPBA17 A Muon Collider as a Higgs Factory – D.V. Neuffer, Y.I. Alexahin, M.A. Palmer (Fermilab) J.-P. Delahaye (SLAC)

TUPBA18 The Nustorm Facility-Muon Storage Ring and Injection Design – A. Liu, A.D. Bross, D.V. Neuffer (Fermilab) S.A. Bogacz (JLAB) S.-Y. Lee (Indiana University)

TUPBA20 Beam-Beam Studies for HL-LHC – A. Valishev (Fermilab)

TUPBA21 Study Muon Polarization in Muon Collider – K. Yonehara (Fermilab)

TUPBA22 Coherent Instability Due to Beam-Beam Interaction in Hadron Colliders – S. Paret, J. Qiang (BNL)

TUPBA23 Particle Flow Algorithm Application for Lepton Collider Background Mitigation – M.A.C. Cummings, P. Saha, V. Zutshi (Northern Illinois University)

TUPBA25 Coupling Spin Resonances With Siberian Snakes – N.Z. Khalil (SBU) V. Ptitsyn (BNL)

01-Oct-13 16:30 – 18:00 Poster Poster Area Hollywood

TUPHO — Poster Session

01 Colliders

TUPHO02 Electron Cooling Simulations for MEIC – G.I. Bell, I.V. Pogorelov, B.T. Schwartz (Tech-X) H. Zhang, Y. Zhang (JLAB)

North American PAC 2013 57

TUPHO04 Electron Cooling Simulation for the Ion Collider Ring in MEIC and LEIC – H. Zhang, Y. Zhang (JLAB)

01-Oct-13 16:30 – 18:00 Poster Poster Area Malibu

TUPMA — Poster Session

02 Light Sources

TUPMA02 High-chromaticity Optics for the MAX IV 3 GeV Storage Ring – T. Olsson, S.C. Leemann (MAX-lab)

TUPMA03 Creation of High-charge Bunch Trains from the APS Injector for Swap-out Injection – C. Yao, M. Borland, L. Donley, L. Emery, F. Lenkszus (ANL)

TUPMA04 Observation of +1 Bucket Bunch Impurity Growth at the APS Storage Ring – C. Yao, M. Borland, B.X. Yang (ANL)

TUPMA05 Alignment of the NSLS-II Linac – R.P. Fillier, D. Davis, E. Karl, T.V. Shaftan (BNL)

TUPMA06 Comparison of the NSLS-II Linac Model to Measurements – R.P. Fillier, T.V. Shaftan (BNL)

TUPMA08 Subpicosecond Bunch Train Production for High Power Tunable TiZ Source – S.P. Antipov, C.-J. Jing, A. Kanareykin, P. Schoessow (Euclid TechLabs, LLC) M.G. Fedurin (BNL) W. Gai, A. Zholents (ANL) V. Yakimenko (SLAC)

Pasadena, CA, USA, 29 September–4 October 2013

TUPMA14 Two-Stream Instability at Soft X-ray Wavelengths for Increasing Brightness of Compton Sources. – N.A. Yampolsky, G.L. Delzanno, C. Huang, D.Y. Shchegolkov (LANL)

TUPMA15 Monte Carlo Simulations of Charge Transport and Photoemission from Electron Affinity GaAs Photocathodes – Y. Choi, D.A. Dimitrov, C. Nieter (Tech-X) I.V. Bazarov, S.S. Karkare (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)

TUPMA16 High Capture Low Energy Spread Inverse Free Electron Laser Accelerator – J.P. Duris (UCLA)

TUPMA20 Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun – R.A. Bosch (UW-Madison/SRC) R.A. Legg (JLAB)

01-Oct-13 16:30 – 18:00 Poster Poster Area Santa Monica

06 Accelerator Systems

TUPSM02 Design and Experiment of a Compact C-band Photocathode RF Gun for UED – X.H. Liu (TUB)

TUPSM03 10s Femtosecond Bunch Length Measurement Based on Coherent Transition Radiation – X.H. Lu (TUB) R.K. Li, P. Musumeci, K.G. Roberts, H.L. To (UCLA)

North American PAC 2013

TUPSM06 The Cathode Preparation Chamber for the DC High Current High Polarization Gun (The Gatling Gun) – O.H. Rahman, I. Ben-Zvi, D.M. Gassner, A.I. Pikin, T. Rao, E.J. Riehn, B. Sheehy, J. Skaritka, E. Wang, Q. Wu (BNL) I. Ben-Zvi (Stony Brook University)

TUPSM07 Parmela Simulation for BNL 704MHz SRF Gun in Low Emittance Operation – E. Wang, I. Ben-Zvi, J. Kewisch (BNL)

TUPSM10 The Conceptual Design of PXIE Vacuum System – A.Z. Chen, V.A. Lebedev, A.V. Shemyakin (Fermilab)

TUPSM11 Development of a Compact Photo-injector with RF-Focusing Lens for Short Pulse Electron Source Application – Y.-M. Shin (Fermilab) D.W. Eaton (Scandinova Systems AB) A.E. Grabenhofer (Northern Illinois University)

TUPSM12 High Power Test of a 3.9 GHz 5-Cell deflecting-mode cavity in a cryogenic operation – Y.-M. Shin, M.D. Church (Fermilab)

TUPSM13 RF Gun Water Temperature Control System at ASTA – P. Stabile, M. Ball, J. Czajkowski, J.D. Firebaugh, P.A. Kasley, P.S. Prieto, T.J. Zuchnik (Fermilab)

TUPSM15 The Muon Ionization Cooling Experiment: Controls and Monitoring System – P.M. Hanlet (IIT)

TUPSM19 Application and Calibration Aspects of a New High-Performance Beam-Dynamics Simulator for the LANSCE Linac – L. Rybarcyk, X. Pang (LANL)

Pasadena, CA, USA, 29 September–4 October 2013
TUPSM20 Integration between the FRIB Linac Mechanical CAD Model Geometry and the Accelerator Physics Lattice Database – M.J. Johnson (NSCL), N.K. Bultman, M. Leitner, Q. Zhao (FRIB)

TUPSM21 Beam Brightness Booster with Ionization Cooling of Super-intense Circulating Beams – C.M. Ankenbrandt, V.G. Dudnikov (Muons, Inc.)

TUPSM23 Quarter-Wave Superconducting RF Electron Guns with Field-Emitter Array Cathodes – C.H. Boulware, T.L. Grimm (Niowave, Inc.)

TUPSM25 Recent CsTe Cathode Investigations at Fermilab’s HBESL – H. Panuganti, P. Piot, C.R. Prokop (Northern Illinois University) P. Piot (Fermilab)

TUPSM26 Android Application for Monitoring the Status of the Advanced Photon Source – M. Borland (Private Address)

TUPSM29 Operational Testing and Performance Results of a Miniature ECR Source – W.D. Cornelius (SSolutions)

TUPSM30 Modeling the Development and Mitigation of Charge Accumulation for Photo Emission Electron Guns – C. Nieter, Y. Choi, D.A. Dimitrov (Tech-X)
WEPAC01 Thermal Dynamics Study of Crab Cavity for SPX Project at Advanced Photon Source – Y. Yang (TUB)

WEPAC02 Copper Prototype Measurement of SC Deflecting Cavity for SPX Project at Advanced Photon Source – Y. Yang, A. Nassiri, T.L. Smith, G.J. Waldschmidt (ANL) H. Wang (JLAB) Y. Yang (TUB)

WEPAC03 An Increased Gradient Design for the ReA6 Quarter Wave Resonators – Z. Zheng, Z.Q. He (TUB) A. Facco (INFN/LNL) A. Facco, Z.Q. He, Z. Liu, J. Wei, Y. Zhang, Z. Zheng (FRIB)

WEPAC04 Hydrogen Degassing Study During the Heat Treatment of 1.3-GHz SRF Cavities – M.J. Joung, H.J. Kim (IBS) A.M. Rowe, M. Wong (Fermilab)

WEPAC05 Measurement of a Superconducting Solenoid with Applications to Low-beta SRF Cryomodules – S.H. Kim, Z.A. Conway, M.P. Kelly, P.N. Ostroumov (ANL) E. Burkhardt (Cryomagnetics, Inc.)

WEPAC09 A Multi-cell Temperature Mapping System for SRF Cavities at Cornell University – G.M. Ge, G.H. Hoffstaetter (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)

WEPAC11 Cornell’s Main Linac Cryo-module Prototype for the ERL – G. Eichhorn, Y. He, G.H. Hoffstaetter, M. Liepe, T. O’Connor, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)

WEPAC12 Theoretical Description of SIS Multilayer Films for SRF Cavities – S. Posen, M. Liepe (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)
<table>
<thead>
<tr>
<th>Track</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 Light Sources</td>
<td>Achieving High Accuracy in Cornell's ERL Cavity Production – G. Eichhorn, B. Bullock, B. Clasby, B. Elmore, J.J. Kaufman, S. Posen, J. Sears, V.D. Shemelin (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education) T. Kürzeder (TU Darmstadt)</td>
<td>WEPAC13</td>
</tr>
<tr>
<td>02 Light Sources</td>
<td>Studies of the Superconducting Traveling Wave Cavity for High Gradient Linac – P.V. Arrakhov, A. Kanareykin, R.A. Kostin (Euclid TechLabs, LLC) N. Solyak, V.P. Yakovlev (Fermilab)</td>
<td>WEPAC14</td>
</tr>
<tr>
<td>02 Light Sources</td>
<td>Ferroelectric Based High Power RF Components for L-band Accelerator Applications – A. Kanareykin (Euclid TechLabs, LLC) S. Kazakov, V.P. Yakovlev (Fermilab) A.B. Kozyrev (LETI) E. Nenasheva (Ceramics Ltd.)</td>
<td>WEPAC15</td>
</tr>
<tr>
<td>07 Accelerator Technology</td>
<td>A Beam-Driven Short Wavelength Microwave Undulator for FEL – A. Kanareykin (Euclid TechLabs, LLC) S. Baturin (LETI) C. Jing, A. Zholents (ANL)</td>
<td>WEPAC16</td>
</tr>
<tr>
<td>07 Accelerator Technology</td>
<td>Study on Particulate Retention on Polished Niobium Surfaces after BCP Etching – I.M. Malloch, C. Compston, L. Popielarski (FRIB)</td>
<td>WEPAC17</td>
</tr>
<tr>
<td>07 Accelerator Technology</td>
<td>SRF Cavity Etching Developments for FRIB Cavity Processing – K. Elliott (NSCL), L.M. Malloch (FRIB)</td>
<td>WEPAC18</td>
</tr>
<tr>
<td>07 Accelerator Technology</td>
<td>Using Higher Order Modes of a Quarter Wave Resonator to Accelerate Ion Beam – E. Pozdeyev (FRIB)</td>
<td>WEPAC19</td>
</tr>
<tr>
<td>07 Accelerator Technology</td>
<td>Tuning Process of SSR1 Cavity for Project X at FNAL – P. Berrutti, M.H. Awida, T.N. Khabiboulline, L. Ristori, V.P. Yakovlev (Fermilab)</td>
<td>WEPAC21</td>
</tr>
<tr>
<td>07 Accelerator Technology</td>
<td>Single Spoke Resonator Inner Electrode Optimization Driven by Reduction of Multipoles – P. Berrutti, T.N. Khabiboulline, L. Ristori, N. Solyak, V.P. Yakovlev (Fermilab)</td>
<td>WEPAC22</td>
</tr>
<tr>
<td>07 Accelerator Technology</td>
<td>Multipacting Simulations of SSR2 Cavity at FNAL – P. Berrutti, T.N. Khabiboulline, L. Ristori, G.V. Romanov, V.P. Yakovlev (Fermilab)</td>
<td>WEPAC23</td>
</tr>
<tr>
<td>07 Accelerator Technology</td>
<td>Mechanical Resonance Simulations of Dressed SRF Cavities – I.V. Gonin, M.H. Awida, T.N. Khabiboulline, Y.M. Pishchalnikov, L. Ristori, W. Schappert, V.P. Yakovlev (Fermilab)</td>
<td>WEPAC24</td>
</tr>
<tr>
<td>07 Accelerator Technology</td>
<td>Development of Variable Coupler for Vertical Testing of High Q SRF Single Cell Cavities – M.H. Awida, A. Grassellino, T.N. Khabiboulline, Y.M. Pishchalnikov, V. Poloubotko, K.S. Premo, V.P. Yakovlev (Fermilab)</td>
<td>WEPAC26</td>
</tr>
</tbody>
</table>
WEPAC41 Comparison of Electromagnetic, Thermal and Mechanical Calculation with RF Test Results in RF Dipole Deflecting/Crabbing Cavities – H. Park, S.U. De Silva, J.R. Delayen (JLAB) S.U. De Silva, J.R. Delayen, H. Park (ODU)

WEPAC43 Study of Cavity Imperfection Impact on RF Parameters and Multipole Components in a Superconducting RF Dipole Cavity – R.G. Olave, S.U. De Silva, J.R. Delayen (ODU)

WEPAC44 Higher Order Modes Damping and Multipacting Analysis for the SPX Deflecting Cavity in APS Upgrade – C.-K. Ng, Z. Li, L. Xiao (SLAC) A. Nassiri, G.J. Waldschmidt, G. Wu (ANL) R.A. Rimmer, H. Wang (JLAB)

WEPAC45 Effects of Cavity Imperfection for Project X CW Superconducting Linac Using ACE3P – C.-K. Ng, L. Ge, Z. Li, L. Xiao (SLAC)

02 Light Sources

WEPAC46 Wakefield Computations for a Corrugated Pipe as a Beam Dechirper for FEL Applications – C.-K. Ng, K.L.F. Bane (SLAC)

07 Accelerator Technology

WEPAC48 Low HOM Impedance SRF Cavity for MEIC – S. Wang, R.A. Rimmer, H. Wang, Y. Zhang (JLAB)

02-Oct-13 16:30 – 18:00 Poster Poster Area Bel Air

WEPA – Poster Session

05 Beam Dynamics and Electromagnetic Fields

WEPBA01 Noise Reduction using Filters on Turn-by-Turn LHC Orbits to Obtain Magnetic Errors with the Action and Phase Jump Analysis Method – A.C. Garcia-Bonilla, J.F. Cardona (UNAL)

WEPBA02 Observation of Peaks of Synchrotron Oscillation of a cold ion beam in S-LSR – K. Jimbo (Kyoto University) M. Nakao, A. Noda, T. Shirai (NIRS) H. Souda (Gunma University, Heavy-Ion Medical Research Center) H. Tongu (Kyoto ICR) Y. Yuri (JAEA/TARRI)

WEPBA04 Luminosity Estimation and Beam Phase Space Analysis at VEPP-2000 – A.L. Romanov, I. Koop, E. Perevedentsev, D.B. Shwartz (BINP SB RAS)

WEPBA05 Combining Multiple BPM Measurements for Precision AC Dipole Bump Closure – P. Oddo, M. Rai, W.C. Dawson, J. Kewisch, Y. Makdisi, C. Pai, P.H. Pile, T. Roser (BNL)

North American PAC 2013
WEPBA06 Stripline Beam Impedance – A. Blednykh, W.X. Cheng, S. Krinsky (BNL)
WEPBA07 Longitudinal Wakefield for an Axisymmetric Collimator – A. Blednykh, S. Krinsky (BNL)
WEPBA08 Wake Fields due to Wall Roughness for Realistic Surfaces – A.V. Fedotov, I. Pinayev (BNL) A. Novokhatiski (SLAC)
WEPBA09 Changes in Electron Cloud Density with Beam Conditioning at CesrTA – J.P. Sikora, J.A. Crittenden, D.O. Duggins, Y. Li, X. Liu (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education) S. De Santis (LBNL)
WEPBA10 Electron Cloud Measurements Using a Shielded Pickup in a Quadrupole at CesrTA – J.P. Sikora, M.G. Billing, J.V. Conway, J.A. Lanzoni, Y. Li (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)
WEPBA11 Tomographic Reconstruction of Transverse Phase Space for Strongly Coupled Beams – Z. Liu, Y. Zhang, Z. Zheng (FRIB) Z.Q. He (TUB)
WEPBA12 Magnetic Field Expressions for Helical Accelerator Magnets – L.N. Brouwer, S. Caspi, D. Robin, W. Wan (BNL)
WEPBA13 Retrieval of Effective Parameters of Metamaterials for Accelerator and Vacuum Electron Device Applications – Z. Duan, J.S. Hummelt, M.A. Shapiro, R.J. Temkin (MIT/PSFC)
WEPBA14 Simulation of Wakefields from an Electron Bunch in a Metamaterial Waveguide – M.A. Shapiro, J.S. Hummelt, B.J. Munroe, R.J. Temkin (MIT/PSFC) S.M. Lewis (MIT)
WEPBA15 Ribbon Electron Beam Source for Bunched Beam Profile Monitor and Tomography – V.G. Dudnikov (Muons. Inc.), A.V. Aleksandrov (ORNL)
WEPBA16 Possible Experiments on Wave Function Localization Due to Compton Scattering – V.V. Danilov, A.V. Aleksandrov, J. Galambos, T.V. Gorloa, Y. Liu, A.P. Shishlo (ORNL) S. Nagaitsev (Fermilab)
WEPBA17 Measurement of Non-Linear Insert Magnets – F.H. O'Shea, R.B. Agustsson, A.Y. Murokh, E. Spranza (RadiaBeam) S. Nagaitsev, A. Vaisilev (Fermilab)
WEPBA19 Wakefield Calculations for Septum Magnet in LCLS-II – K.L.F. Bane, T.O. Raubenheimer (SLAC)
WEPBA20 New Technique to Measure the Emittance of Beams with Space Charge – K. Poor Režaee, R.B. Fiorito, R.A. Kishik (UMD)
07 Accelerator Technology

WEPHO01 High Power RF System for E-linac for TRIUMF –
A.K. Mitra, Z.T. Ang, I.V. Bylinskii, S. Calic, D. Dale,
S.R. Koscielecki, R.E. Laxdal, F. Mammarella (TRIUMF)

WEPHO02 Solid-state Marx Modulator for RF Accelerators –
B. Cadilhon, B. Cassany (CEA)

WEPHO03 The Layout of 352 MHz 400 kW Power Amplifier –
A.Yu. Smirnov, E.V. Ivanov, A.A. Krasnov, K.I. Nikola-
skiy, S.A. Polikhoiv, I. Rezanov (Siemens Research Center)
G.B. Sharkov (Siemens LLC)

WEPHO04 The Layout of 72 MHz 16 kW RF Power Generator –
A.Yu. Smirnov, E.V. Ivanov, A.A. Krasnov, K.I. Nikola-
skiy, S.A. Polikhoiv, I. Rezanov (Siemens Research Center)
G.B. Sharkov (Siemens LLC)

WEPHO05 Overview of the RHIC e-Lens Superconducting Mag-
net Power Supply System – D. Bruno, A. Di Lieto,
G. Ganetis, R.E. Lambiase, W. Louie, C. Mi, T. Samms,
J. Sandberg (BNL)

WEPHO06 Elens Superconducting Magnet Power Supply System
Design, Testing, Installation and Commissioning –
C. Mi, D. Bruno, A. Di Lieto, T. Samms, J. Sandberg,
C. Schultheiss, C. Sirio, R. Zapasek (BNL)

WEPHO07 RHIC IR Power Supply Performance Upgrade over
Run 11, 12 and 13 – C. Mi, D. Bruno, A. Di Lieto, G. Hopper,
W. Ng, T. Samms, J. Sandberg, C. Schultheiss,
C. Sirio, R. Zapasek (BNL)

WEPHO08 200 kW CW, 350 MHz Multiple Beam Inductive Out-
put Tube – R.L. Ives, G. Collins, R. Karimov, D. Marsden,
M.E. Read (CCR) E.L. Eisen, T. Kumura (CPI)

WEPHO09 10 MW, L-Band, Annular Beam Klystron for Accelera-
tor Applications – M.E. Read, G. Collins, F. Ferguson,
R.L. Ives, R.H. Jackson, D. Marsden (CCR)

WEPHO10 X-Band RF Power Generation via an L-Band Acceler-
ator System and Uses – N. Sipahi, S. Biedron, S.V. Milton,
T. Sipahi (CSU) C. Adolphsen (SLAC)

WEPHO11 Components of Heating and Fueling of Fusion Plas-
mas – F.M. Niell, M.P. Gaudreau, K. Schroek, B.E. Simpson
(Diversified Technologies, Inc.)

WEPHO12 Short Pulse Marx Modulator Optimization for Ad-
vanced Accelerators – R.A. Phillips, M.P. Gaudreau,
B.E. Simpson (Diversified Technologies, Inc.)

WEPHO13 Test of an L-Band Energy-Efficiency Solid State RF
Power Source – X. Chang, N. Barov, D.J. Newsham,
D. Wu (Far-Tech, Inc.)

WEPHO14 System Considerations for 201.25 MHz RF System
for LANSCE – J.T.M. Lyles, W.C. Barkley, J. Davis,
A.C. Naranjo, P.D. Olivas, D. Rees, G. M. Sandoval, Jr.
(LANL) D. Baca, R.E. Bratton, R.D. Summers (Compa
Industries, Inc.)

WEPHO15 Modelling of a Magnetron Transmitter for the Project
X CW 1 GEV Linac – G.M. Kazakevich, R.P. Johnson
(Muons. Inc.) B. Chase, R.J. Pasquinelli, V.P. Yakovelev
(Fermilab)
WEPH016 High MTBF RF Source Based upon the Injection Locked Magnetron – M.L. Neubauer, A. Dudas (Muons. Inc.) H. Wang (JLAB)

WEPH017 MW-Level Coax Coupler – M.L. Neubauer (Muons. Inc.) R.A. Rimmer (JLAB)

WEPH019 High-Power Low-Voltage Multi-Beam Klystrons for ILC and Project X – S.V. Shchelkunov (Yale University, Beam Physics Laboratory) J.L. Hirshfield (Yale University, Physics Department) J.L. Hirshfield (Omega-P Inc.) S. Kazakov, N. Solyak, V.P. Yakoelev (Fermilab) V.E. Teryaev (BINP SB RAS)

WEPH020 Second Harmonic Multiplier at 5.7 GHz for Testing Multi-Frequency Structures – S.V. Shchelkunov, Y. Jiang (Yale University, Beam Physics Laboratory) J.L. Hirshfield (Yale University, Physics Department) J.L. Hirshfield (Omega-P, Inc.)

02-Oct-13 16:30 – 18:00 Poster Poster Area Malibu

WEPMA — Poster Session

07 Accelerator Technology

WEPMA01 Optimization of the SLED Phase Modulation Parameters of the FERMI@Elettra Linac – C. Serpico, M. Dal Forno, A. Fabris (Elettra-Sincrotrone Trieste S.C.p.A.)

WEPMA03 Tuner System Assembly and Tests for the 201-MHz MICE Cavity – L. Somaschini (INFN-Pisa) A.J. DeMello, D. Li, S.P. Virostek (LBNL) P.M. Hanlet (ITT) A. Moretti, R.J. Pasquinelli, D.W. Peterson, Y. Torun (Fermilab)

WEPMA04 Choke-mode Damped Accelerating Structure for the CLIC Main Linac – J. Shi, H.B. Chen, H. Zha (TUB)

WEPMA05 RF Design Optimization of a 176 MHz CW RFQ – B. Mustapha, S.V. Kutsaev, P.N. Ostroumov (ANL)

WEPMA06 Engineering Design and Analysis of a 176 MHz CW RFQ – B. Mustapha, S.V. Kutsaev, P.N. Ostroumov (ANL)

WEPMA07 Modeling Vacuum Arcs in Linac Structures – J. Norem (ANL) Z. Insepov, S. Nurkenov (Nano Synergy, Inc.) A. Moretti (Fermilab)

WEPMA08 Tuning, Conditioning, and Dark Current Measurements of the 1300 MHz NCRF Cavities at Argonne Wakefield Accelerator (AWA) Facility – J.G. Power, M.E. Conde, D.S. Doran, W. Gai, C.-J. Jing (ANL, Euclid TechLabs, LLC)

WEPMA09 PPM-Focused Klystrons for Accelerator Systems – P. Ferguson, R.L. Ives, D. Marsden, M.E. Read (CCR) J.E. Clayton (Varian Medical Systems, Oncology Systems)

Pasadena, CA, USA, 29 September–4 October 2013
WEPMA11 Progress Toward the Development of a Rapidly Tunable RF Cavity – D.J. Newsham, J.R. Thompson (FarTech, Inc.)

WEPMA12 Investigation of Breakdown Induced Surface Damage on 805 MHz Pill Box Cavity Interior Surfaces – M.R. Jana, M. Chung, M.A. Leonova, A. Moretti, A.V. Tollesrump, K. Yonehara (Fermilab) D.L. Bowring (LBNL) B.T. Freemire, Y. Torun (IIT)

WEPMA13 Design and High Power Testing of 52.809 MHz RF Cavities for Slip Stacking in the Fermilab Recycler Ring – R.L. Madrak, D. Wildman (Fermilab)

WEPMA14 Perpendicularly Biased YIG Tuners for the Fermilab Recycler 52.809 MHz RF Cavities – R.L. Madrak, V.S. Kashikhin, A.V. Makarov, D. Wildman (Fermilab)

WEPMA19 Progress on the Fabrication of a CW Radio-frequency Quadrupole (RFQ) for the Project X Injector Experiment (PXIE) – M.D. Hoff, A.J. DeMello, A.R. Lambert, D. Li, J.W. Staples, S.P. Virostek (LBNL)

WEPMA20 RF, Thermal, and Structural Finite Element Analysis of the Project X Injector Experiment (PXIE) CW Radio-frequency Quadrupole (RFQ) – A.R. Lambert, M.D. Hoff, D. Li, J.W. Staples, S.P. Virostek (LBNL)

WEPMA21 Final Design of a CW Radio-frequency Quadrupole (RFQ) for the Project X Injector Experiment (PXIE) – S.P. Virostek, A.J. DeMello, M.D. Hoff, A.R. Lambert, D. Li, J.W. Staples (LBNL)

WEPMA22 Investigation on Double Dipole Four-Vane RFQ Structure – K.R. Shin (ORNL RAD) M.S. Champion, Y.W. Kang (ORNL) A.E. Fathy (University of Tennessee)

Harmonic Ratcheting for Fast Ferrite Tuned RF Acceleration – N.M. Cook (Stony Brook University) J.M. Brennan, S. Peggs (BNL)

Multipacting Study for the RF Test of the MICE 201 MHz RF Cavity at MTA – T.H. Luo, D.J. Summers (UMiss) D. Li, M.S. Zisman (LBNL)

Tests of a Detuned Single-Mode Two-Beam Accelerator Structure – Y. Jiang, L.R. Carver, R.M. Jones (Yale University, Beam Physics Laboratory) L.R. Carver, R.M. Jones (UMAN) L.R. Carver, R.M. Jones (Cockcroft Institute) J.L. Hirshfield (Yale University, Physics Department) J.L. Hirshfield (Omega-P, Inc.)

Study of a Detuned Multi-Harmonic Two-Beam Accelerator Structure – Y. Jiang, L.R. Carver, R.M. Jones (Yale University, Beam Physics Laboratory) L.R. Carver, R.M. Jones (UMAN) L.R. Carver, R.M. Jones (Cockcroft Institute) J.L. Hirshfield (Yale University, Physics Department) J.L. Hirshfield (Omega-P, Inc.)
WEPSM07 Beam-based Alignment of the First Superconducting Undulator at APS – K.C. Harkay, L.E. Boon, M. Borland, L. Emery, R. Kustom, V. Sajaev, Y. Shiroyanagi, A. Xiao (ANL) L.E. Boon (Purdue University)

WEPSM10 Design of a 17.2-mm-Period Planar Undulator for the APS – E.R. Moog, M. Abliz, R.J. Dejus, J.H. Grimmer, M.S. Jaski (ANL)

WEPSM12 Non-linear Effects of Insertion Devices: Simulation and Experiment Results – A. Xiao, L. Emery, V. Sajaev (ANL)

WEPSM13 On-axis Injection Scheme for Ultra-Low-Emittance Light Sources – A. Xiao, M. Borland, C. Yao (ANL)

WEPSM16 Plans for the First Turns Commissioning in NSLS-II Storage Ring – S. Seletskii (BNL)

WEPSM18 Investigation of Upstream Transient Wakefields due to Coherent Synchrotron Radiation in Bunch Compression Chicanes – C.E. Mitchell, J. Qiang (BNL)

WEPSM19 Highly Parallelized Implementations of the Undulator Radiation Spectrum Calculation – H. Tarawneh, S. James, K. Muriki, H. Nishimura, Y. Qin, K. Song (BNL) A. Miyamoto, S. Sasaki (HSRC)
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>THPAC01</td>
<td>Longitudinal Emittance Measurement System for the ARIEL Electron Linac</td>
<td>A.R. Vrielink, Y.-C. Chao, C. Gong, R.E. Laxdal, V Zvyagintsev (TRIUMF)</td>
</tr>
<tr>
<td>THPAC02</td>
<td>Numerical Evaluation of Field Profiles of Undulators with Ring and Semicircle Bulk High-Tc Superconductors</td>
<td>M. Tsuchimoto (Hokkaido Institute of Technology)</td>
</tr>
<tr>
<td>THPAC03</td>
<td>Beam Dump Design for the In-flight Fragment Separator using High-power Beam</td>
<td>J.Y. Kim, J.-W. Kim, M. Kim (IBS)</td>
</tr>
<tr>
<td>THPAC04</td>
<td>Beam Position Electronics Based on System on Chip Platform</td>
<td>G. Jug, M. Cargnelutti, R. Hrovatin, P. Leban (I-Tech)</td>
</tr>
<tr>
<td>THPAC05</td>
<td>Design and Fabrication of a BPM with Low-Q for Measurement of EM Fields in a Cavity to Investigate Multi Beam Concepts</td>
<td>L.R. Carver (UMAN) J.L. Hirshfield (Yale University, Physics Department) J.L. Hirshfield (Omega-P, Inc.) Y. Jiang (Yale University, Beam Physics Laboratory)</td>
</tr>
<tr>
<td>THPAC06</td>
<td>Comparison of Simulations and Analytical Theory of Radiation Heating on the Advanced Photon Source Superconducting Undulator</td>
<td>L.E. Boon (Purdue University) L.E. Boon, R.J. Dejus, K.C. Harkay, M.S. Jaski (ANL)</td>
</tr>
<tr>
<td>THPAC07</td>
<td>Thermal Modeling of the Prototype Superconducting Undulator</td>
<td>Y. Shiroyanagi, C.L. Doose, J.D. Fuerst, K.C. Harkay, Q.B. Hasse, Y. Ivanuyshekov, M. Kasa (ANL)</td>
</tr>
<tr>
<td>THPAC08</td>
<td>Modernization of the Bergoz Multiplexed BPM System for the APS Upgrade</td>
<td>X. Sun, H. Bui, G. Decker, R.T. Keane, R.M. Lill, B.X. Yang (ANL)</td>
</tr>
</tbody>
</table>

THPAC14 3D Hall Probe Calibration System at BNL Insertion Devices Laboratory – M.M. Musardo, T.M. Corwin, D.A. Harder, P. He, C.A. Kitegi, W. Licciardi, G. Rakowsky, T. Tanabe (BNL)

THPAC16 Upgrade of Beam Injection Diagnostics at BNL NSLS – S. Seletskiy (BNL)

THPAC17 Alkali Antimonide Cathodes for Accelerators - a Materials Perspective – J. Smedley, S.G. Schubert (BNL) I. Ben-Zvi, X. Liang, E.M. Muller, M. Ruiz-Osés (Stony Brook University) H.A. Padmore, J.J. Wong (BNL) J. Xie (ANL)

THPAC18 Progress on Growth of a Multi-alkali Photocathode for ERL – E. Wang, S.A. Belomestnykh, I. Ben-Zvi, T. Rao, J. Smedley (BNL) I. Ben-Zvi, M. Ruiz-Osés (Stony Brook University) X. Liang (SBU)

THPAC19 Temperature Dependence of Photoemission from Copper and Niobium – J.R. Harris (CSU) C.W. Bennett, M.D. Galt, A.D. Holmes, A. Kara, R. Swell (NPS) J.W. Lewellen (LANL) J. Sears (Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)

THPAC20 Beam Position and Phase Measurements of Microampere Beams at the Michigan State University ReA3 Facility – J.A. Rodriguez (FRIB)

THPAC23 Lifetime Study of Tungsten Filaments in an H- Surface Convertor Ion Source – I. Draganić, J.F. O'Hara, L. Rybarcyk (LANL)

THPAC24 PIN Diode Detectors at DARHT II – J.B. Johnson (LANL)

THPAC26 Analog Front End Design for High Speed Digitizing of Beam Position and Phase Measurements at LANSCE – H.A. Watkins, J.D. Gilpatrick, R.C. McCrady (LANL)

THPAC29 Fabrication and Validation of a Normal Conducting Radio Frequency S-Band Deflecting Cavity for the Pohang Accelerator Laboratory (PAL) – L. Faillace, R.B. Agustsson, J.J. Hartzell, A.Y. Murokh, S. Storms (RadiaBeam)

THPAC31 Laser Wire Scanner for Energy Recovery Linacs – B.T. Jacobson (RadiaBeam)

THPAC32 Transverse Beam Profile Diagnostic Using Fiber Optic Array – S. Wu, R.B. Agustsson, G. Andonian, T.J. Hodgetts (RadiaBeam) G. Andonian, R.K. Li, C.M. Scoby (UCLA)

THPAC33 Scintillator Diagnostics for the Detection of Laser Accelerated Ion Beams – N.M. Cook (Stony Brook University) R.S. Lefferts (SBUNSL) O. Tresca (BNL) V. Yakimenko (SLAC)

THPAC34 Diamond Amplifier Design and Preliminary Test – T. Xin, S.A. Belomestnykh, I. Ben-Zvi (Stony Brook University) S.A. Belomestnykh, I. Ben-Zvi, T. Rao, J. Skaritka, E. Wang, Q. Wu (BNL)

THPAC37 Surface Plasmon Resonance Enhanced Multiphoton Emission from Metallic Cathode – H.L. To, G. Andonian, R.K. Li, P. Musumeci (UCLA) G. Andonian (RadiaBeam)
Design, Fabrication, Measurement, Installation and Alignment of Two Types of Quadrupole/sextupole Combined Magnets for the Upgrade of the 1.2 GeV Booster Synchrotron at Tohoku University – W. Beeckman, S. Antoine, P. Bocher, F. Forest, P. Jehanno, P. Jivkov, M.J. Leray, S. Taillardat (Sigmaphi) H. Hama, F. Hinode (Tohoku University, Research Center for Electron Photon Science) L. Swinnen (Sigmaphi Japan)

Multipole Magnetic Measurements using a Lock-in Amplifier Technique – C.L. Doose, M. Kasa (ANL)

Magnetic Measurements of the First Superconducting Undulator at the Advanced Photon Source – C.L. Doose, M. Kasa (ANL)

Partial Return Yoke for MICE - Engineering Design – H. Witte, S.R. Plate (BNL) A.D. Bross (Fermilab) J.S. Tarrant (STFC/RAL)

Partial Return Yoke for MICE - General Concept and Performance – H. Witte, S.R. Plate (BNL) A.D. Bross (Fermilab) J.S. Tarrant (STFC/RAL)

A Kicker Driver for the International Linear Collider – N. Butler, M.P. J. Gaudreau, M.K. Kempkes, F.M. Niell (Diversified Technologies, Inc.)

Progress on the Assembly of the MSU Superferric Cyclotron Gas Stopper Superconducting Magnet – M.A. Green, G. Bollen, S. Chouhan, A. Zeller (FRIB) J. DeKamp, D. Lawton, C. Magsig, D.J. Morrissey, J. Otterman, S. Schwarz (NSCL)

Impact of Radiation on the Mu2e Production Solenoid Performance – V.V. Kashikhin, M.J. Lamm, N.V. Mokhov, V.S. Pranskikh (Fermilab)

A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab – D.F. Orris, R.H. Carcagni, J.M. Nogiec, R. Rabehl, C. Sylvester, M.A. Tartaglia (Fermilab)
THPBA17 Status Of PXIE 200 Ω MEBT Kicker Development – G.W. Saewert, M.H. Auvida, H. Pfeffer, D. Wolff (Fermilab) D. Frolov (Kuban State University)

THPBA18 Testing of a Single 11T Nb3Sn Dipole Coil Using a Magnetic Mirror Structure – A.V. Zlobin, N. Andreev, E.Z. Barzi, G. Chlachidze, V.V. Kashikhin, A. Nlobrega, I. Novitski, D. Turioni (Fermilab) M. Karppinen, D. Smekens (CERN)

THPBA19 Storage Ring and Interaction Region Magnets for a μ+μ- Higgs Factory – A.V. Zlobin, Y.I. Alexahin, V.V. Kashikhin, N.V. Mokhov (Fermilab)

THPBA25 Radiation Tolerant Multipole Correction Coils for FRIB Quadrupoles – S.A. Kahn (Muons. Inc.) R.C. Gupta (BNL)

THPBA27 Simulation Workstation – T.J. Roberts, C.M. Ankenbrandt (Muons. Inc.)

THPBA29 Recent Improvements in Particle Simulation Support in Analyst-MP – J.F. DeFord, B.L. Held, A.A. Nichols, K.J. Willis (STAAR/AWR Corporation)
06 Accelerator Systems

THPHO01 Parameter Optimization for Multi-Dimensional Laser Cooling for an Ion Beam in the Storage Ring

S-LSR – Z.Q. He (TUB) K. Jimbo (Kyoto University, Institute for Advanced Energy) M. Nakao, A. Noda (NIRS) H. Okamoto, K. Osaki (HU/AdSM) H. Souda (Gunnma University, Heavy-Ion Medical Research Center) J. Wei (FRIB) Y. Yuri (JAEA/TARRI)

THPHO02 Design of the Final Focus of the Proton Beam for a Neutrino Factory – J. Pasternak, M. Aslaninejad (Imperial College of Science and Technology, Department of Physics) K. E. Gollwitzer (Fermilab) H.G. Kirk (BNL) K.T. McDonald (PU)

THPHO03 APS Fast Orbit Feedback System Upgrade – R. Lipa, N.D. Arnold, H. Bui, G. Decker, T. Fors, R. Laird, E. Lenkszus, A.J. Scaminaci, N. Sernone, S.E. Shoaf (ANL)

THPHO04 Linear Analysis for Several 6-D Ionization Cooling Lattices – J.S. Berg, R.B. Palmer, D. Stratakis (BNL)

THPHO05 A Planar Snake Muon Ionization Cooling Lattice – R.B. Palmer, J.S. Berg, R.C. Fernow, D. Stratakis (BNL)

THPHO07 Novel Mechanical Design for RHIC Transverse Stochastic Cooling Kicker – C.J. Liaw, S. Bellavia, J.M. Brennan, K. Mernick, M. Myers, J.E. Tuozzo (BNL)

THPHO08 Robust Mechanical Design for RHIC Transverse Stochastic Cooling Pickup – C.J. Liaw, J.M. Brennan, V. De Monte, K. Mernick, M. Myers, J.E. Tuozzo (BNL)

07 Accelerator Technology

06 Accelerator Systems

THPHO11 Optimization of the Capture Section of a Staged Neutrino Factory – H. K. Sayed, H.G. Kirk, D. Stratakis (BNL) X.P. Ding (UCLA) K.T. McDonald (PU) D.V. Neuffer (Fermilab) P. Snopok (Illinois Institute of Technology)

THPHO12 Studies on New, High-Performance, 6-Dimensional Ionisation Cooling Lattices for Muon Acceleration – D. Stratakis, J.S. Berg, R.C. Fernow, R.B. Palmer (BNL)

North American PAC 2013 77
THPH013 Limitations Imposed by Space Charge on the Final Stages of a Muon Collider Ionization Cooling Channel – D. Stratakis, J.S. Berg, R.B. Palmer (BNL) D.P. Grote (LLNL)

THPH015 Analysis of MICE Spectrometer Solenoid Magnetic Field Measurements – M.A. Leonova (Fermilab)

THPH016 Six-dimensional Ionization Cooling Lattice based on 325 and 650 MHz RF Cavities – D. Stratakis (BNL), P. Snopok (Illinois Institute of Technology)

THPH017 a Muon Beam Line for Cooling Experiments at NuSTORM – D.V. Neuffer, A.D. Bross (Fermilab), A. Liu (Indiana University) P. Snopok (Illinois Institute of Technology)

THPH018 Status of the Muon Ionization Cooling Experiment (MICE) – Y. Torun (IIT) M.S. Zisman (LBNL)

THPH020 Optimization and Aberration Correction of the Twin Helix Parametric Ionization Cooling Channel for Muon Beams – J.A. Maloney (Northern Illinois University) A. Afanasev (GWU) R.P. Johnson (Muons. Inc.) V.S. Morozov (JLAB)

THPH021 Magnetic Bunch Compression for a Compact Compton Source – T. Satogata, B.R.P. Gamage (ODU) T. Satogata (JLAB)

THPH022 Recent Developments on Parametric-resonance Ionization Cooling – V.S. Morozov, Y.S. Derbenev (JLAB) A. Afanasev (GWU) C.M. Ankenbrandt (Muons. Inc.) B. Erdelyi (Northern Illinois University)

THPH023 Improvement of Digital Filter for the FNAL Booster Transverse Dampers – T.V. Zolkin (University of Chicago) N. Eddy, V.A. Lebedev (Fermilab)

03-Oct-13 16:30 – 18:00 Poster Poster Area Malibu

THPMA – Poster Session

06 Accelerator Systems

THPMA01 Fast FPGA Based Low-Trigger-Jitter Waveform Generator Method for Barrier-Bucket Electronics at FAIR – E. Bayer, P. Zipf (University of Kassel) A. Klaus, H. Klingbeil, G. Schreiber (GSI)

THPMA02 ADRC Based Piezo-electric Tuner Design for RF Cavity – Z. Zheng (TUB) Z. Liu, D. Morris, J. Wei, Y. Zhang, S. Zhao (FRIB)

THPMA03 Systems of Radiation Monitoring at SR Facilities at BINP – M. Petrichenkov, V.Ya. Chudaev, V.V. Eksta, V.F. Pindyurin, A.V. Repkov, M.A. Sheromov (BINP SB RAS)

THPMA05 Energy Deposition in the Sector 37 Scraper of the Advanced Photon Source Storage Ring – J.C. Dooling, M. Borland, Y.-C. Chae, R.R. Lindberg, A. Xiao (ANL)

THPMA06 Android Application for Accelerator Physics and Engineering Calculations – M. Borland (Private Address)

THPMA08 Fermilab MuCool Test Area Cavity Conditioning Control Using LabVIEW – D.W. Peterson, Y. Torun (Fermilab), Y. Torun (Illinois Institute of Technology)

THPMA10 Energy Deposition in Magnets and Shielding of the Target System of a Staged Neutrino Factory – X.P. Ding (UCLA) H.G. Kirk (BNL) K.T. McDonald (PU) C.T. Rogers (STFC/RAL/ASTeC) P. Snopok (IIT) R.J. Weggel (Particle Beam Lasers, Inc.)

THPMA11 Optimization of Particle Production for a Staged Neutrino Factory – X.P. Ding (UCLA) H.G. Kirk (BNL) K.T. McDonald (PU)

THPMA12 Design of Magnets for the Target and Decay Region of a Staged Neutrino Factory – R.J. Weggel (Particle Beam Lasers, Inc.) X.P. Ding (UCLA) V.B. Graves (ORNL) H.G. Kirk, H. K. Sayed (BNL) K.T. McDonald (PU)

THPMA14 A High-Intensity Neutron Production Target based on Rotary Valving – B. Rusnak, P. Fitsos, M. Hall, R. Souza (LLNL)

THPSM02 Simulation of X-band 30 MeV Linac Neutron Source – K. Tagi (University of Tokyo) K. Dobashi, T. Fujitwara, M. Uesaka (The University of Tokyo, Nuclear Professional School) M. Yamamato (Accuthera Inc.)
THPSM03 Direct Diagnostic Technique for a High Intensity Laser Based on Laser Compton Scattering – R. Sato, A. Endo, K. Nonomura, K. Sakaue, M. Washio, Y. Yoshida (Waseda University)

08 Medical Accelerators and Applications

THPSM08 Horn Antenna Design for THz Band Radiation Source – T.V. Bondarenko, S.M. Polozov, A.Yu. Smirnov (MEPhI)

THPSM09 Application of Low-Energy Proton LINAC to ADS for Energy Production – A.G. Golovkina, D.A. Ovsyannikov (St. Petersburg State University) I.V. Kudinovich (KSRC)

09 Industrial Accelerators and Applications

THPSM10 Statistical Analysis of Propagated Effects on Depth-Dose Distribution Curves due to Uncertainties in Initial Proton Beam Energy – P.A. Posocco, M. Aslaninejad, J.E Piech, S. Zalel (Imperial College of Science and Technology, Department of Physics)

THPSM11 A Novel Solution for FFAG Proton Gantries – J. Pastor-nak, M. Aslaninejad, P.R.N. Holland, P.A. Posocco, G.W. Walton (Imperial College of Science and Technology, Department of Physics)

THPSM12 A Ready-to-use Application of Laser-Plasma Accelerators using Gabor Lenses – J.K. Pozimski, M. Aslaninejad, N. Dover, Z. Najmudin, R.M. Nichols, P.A. Posocco (Imperial College of Science and Technology, Department of Physics)

06 Accelerator Systems

THPSM13 Characterisation of Nitrogen Clusters and Gas Jet Targets under Varied Nozzle Geometries – P.A. Posocco, N. Dover, C. Hughes, Z. Najmudin (Imperial College of Science and Technology, Department of Physics)

09 Industrial Accelerators and Applications

07 Accelerator Technology

THPSM15 A Compact Cavity BPM System for 1300 MHz Cryomodules – N. Barov (Far-Tech, Inc.)

08 Medical Accelerators and Applications

09 Industrial Accelerators and Applications

THPSM17 Tunable, Nearly Monoenergetic Gamma Ray Beams for SNM Interrogation – C.M. Ankenbrandt, R.J. Abrams, M.A.C. Cummings (Muons. Inc.)

THPSM18 Adaptive High Speed Rail Cargo Scanning System – S. Boucher, A. Arodzero, A.Y. Murokh (RadiaBeam)

THPSM19 Compact Schemes for Laser-free THz-Sub-THz Source – A.V. Smirnov (RadiaBeam)

THPSM20 Linac-based Photonuclear Applications at the Idaho Accelerator Center – M. Mamtimin, F. Harmon, V. Starovoitova (IAC) F. Harmon (ISU)

THPSM21 Adaptation of the ISIS Induction-cell Driver to a Low-Impedance X-pinch Driver – R.V. Shapovalov (IAC)
Boldface papercodes indicate primary authors

— A —

Abell, D.T. MOPAC35
Abeyratne, S. MOPBA13
Abeliz, M. WEPSM09, WEPSM10, WEPSM11
Abrams, R.J. THPSM17
Adli, E. MOYBA1, THYAA2, THOCA1, MOPAC02, MOPAC37, MOPAC38, MOPAC40, MOPAC46
Adolphsen, C. WEOA1, WEOBA1, WEPHO10, WEPMA10, WEPMA18
Afanasev, A. TPHO20, TPHO22
Agladze, N.I. TUYBA1
Ahrens, D. MOPBA14
Aler Marzouk, A.A. MOPAC21, MOPAC22, TUPMA10
Albert, F. MOPSM02
Alcroft, M. TUYBA1, WEPBA15, WEPBA16
Alessi, J.G. TUYBA1
Ali, M.M. TUPBA17, THPBA19
Allezy, A.P. WEOA1
Altinbas, Z. TUPCA2, TUPHO01
Amemiya, N. FRXB1
Amyx, K.M. MOPBA23
An, W. THYAA2, THOCA1, MOPAC04, MOPAC37, MOPAC38, MOPAC46
An, Y.W. TUPBA03
Anderson, D.E. MOPMA04
Anderson, G.G. MOPAC43, TUPMA10
Anderson, S.G. MOPAC43, TUPMA10, WEPBA24
Andonian, G. M00CB2, MOPBA17, MOPHO25, THPAC32, THPAC37, MOPAC08
Andreev, N. TUPSM14, MOPHO20, THPSM16
Andrews, A. TUPCA2
Andrews, H.L. TUPCA2
Anerella, M. WEOA2, WEOBA2, WEPBA24
Ang, Z.T. THPBA03
Ankenbrandt, C.M. TUPBA20, MOPAC26, MOPBA12, MOPMA21, TUPSM21, THPBA27, WEPHO19, WEPHO22, THPSM17
Antipov, S.P. MOPAC24, THYBA1, MOPAC11, MOPAC12, MOPHO19, TUPMA08
Antoine, S. TPHBA03
Araki, H. FRXB1
Arimoto, Y. WE0A1, WEOA2, WEPBA24
Arendt, D. WEOA1, WEOA2, FRXB1
Arkan, T.T. TUPMA01
Arnold, N.D. TPHHO03
Arodzero, A. THPSM18
Arseniyev, S. MOPAC25, WEPAC33, WEPAC34
Aryshev, A.S. TUPMA01
Aschenauer, E.C. TUPBA15
Aslaninejad, M. MOPMA05, THPH002, THPSM10, THPSM11, THPSM12
Assadi, S. THODA2, TUPAC26
Attenkofer, K. THPAC12
Avrakhov, P.V. WEPAC14
Awida, M.H. WEPAC21, WEPAC24, WEPAC25, WEPAC26, WEPAC29, WEPAC31, WEPAC32, THPBA17

— B —
Baartman, R.A. WEZBB1
Babzien, M. MOPAC49
Baca, D. WEPHO14
Back, B. MOPSM02
Bai, M. WETB1, TUPAC12, TUPBA01, TUPBA02, TUPBA04, TUPBA06, WEPBA05, TUPBA03, MOPMA18, TUPSM13
Bai, S.
Baily, S.A.
Ball, M.
Bane, K.L.F.
Barber, D.P.
Barcikowski, A.
Barkley, W.C.
Barlow, R.J.
Barov, N.
Bartnik, A.C.
Bartolini, R.
Bartosik, H.
Barty, C.PJ.
Barzi, E.Z.
BASHKirov, VA.
Bassi, G.
Baturin, S.
Batygim, Y.K.
Bauer, C.A.
Baumann, T.
Bayer, E.
Bazarov, I.V.
Beasley, P.
Beaudoin, B.L.
Beebe, E.N.
Beeckman, W.
Belkacem, B.
Bell, G.I.
Bellavia, S.
Bellodi, G.
Belomestnykh, S.A.

MOPBA03
MOPMA14, MOPMA17, MOPSM05, TUPSM16, TUPSM17, TUPSM18
MOPAC09
FRYBA2
THPMA01
TUOB1, TUOAB1, WE0AA4, MOPBA21, TUPMA15
THOB2
FROA1, TUPAC31, TUPAC32, TUPAC33
TUPH081
THPBA03
THPAC10
TUPH082
THPH007
MOZBA1
TUOAA1, MOPSM04, WEPAC06, WEPAC07, THPAC18, THPAC34, THPAC35, THPH006

Index

North American PAC 2013 83
Ben-Zvi, I.
TUOA1, MOPBA21, MOPSM04, TUPSM06, TUPSM07, TUPSM08, WEPAC06, THPAC18, THPAC34, THPAC35, THPHO06, THPAC12, THPAC17

Benedetti, C.
THOCA2

Benedetto, E.
TUODB3

Bennett, C.W.
THPAC19

Benson, S.V.
WEPSM17

Bentley, P.
MOPMA04

Berg, I.S.
WEODA2, MOPBA07, TUPAC09, TUPBA10, TUPBA11, TUPBA13, TUPAC05, THP004, TUPH005, THPH012, THPH013

Bergstrom, J.C.
MOPBA19

Berkasov, D.E.
MOOAA2

Berls, B.L.
TUPSM14

Bernal, S.
FROAA1, TUPAC31

Berrutti, P.
WEPAC21, WEPAC22, WEPAC23, WEPAC29, WEPAC31, WEPAC32

Berz, M.
MOPBA11

Betts, S.M.
MOPAC43

Biedron, S.
TUPSM09, WEPHO10, WEPMA10, WEPSM17

Billing, M.G.
WEPBA10

Biocca, A.
TUOCB2

Bisognano, J.
MOPHO26, TUPMA19

Bissen, M.J.
TUPMA19

Björklund, E.
MOPMA15

Blaskiewicz, M.
MOOAA2, TU00A1, TU0A1, FROAA2, MOPBA03, TUPBA20

Blau, J.
MOPBA03, WEPBA06, WEPBA07

Blednykh, A.
TUPSM04

Blomberg, B.R.
TM0BA03

Blumer, H.
TUPBA18, TUPBA20

Bogacz, S.A.
THPBA12

Bollen, G.
MOPAC01

Bonatto, A.
WEBCB2, TUPAC05, THPSM08

Bonatto, C.
WEAA3, WEPMA06, WEPMA07, TUPMA08

Bondarenko, T.V.
WEOCA2, MOPBA03, TUPMA06, WEPMA07, TUPMA08

Boon, L.E.
WEOBA2, WEOCA1, TU00A1, TU0A1, WECA23, WEPMA06, THPSM08

Borden, T.
MOPMA08

Borissov, E.
WEPAC25, WEPAC29

Borland, M.
TUOB2, WE00A3, MOPBA23, MOPH006, MOPH007, MOPH010, MOPMA03, TUPMA03, WEPMA04, WEPMA06, WEPMA07, WEPMA13, THPMA05, TUPMA26, THPMA06

Bosch, R.A.
WEPC02, TUPMA19, TUPMA20

Bosser, R.
THPBA22

Boucher, S.
TU00B2, WE00B1, THOAA2, TUPSM28, WEPBA18, TUPMA18

Boulet, L.E.
TU00B1

Boulware, C.H.
MOPH024, TUPSM23, WEPAC33, WEPAC37, WEPAC38, THPAC35

Bowman, C.
THPBA23
Bowring, D.L. WEPMA12, WEPMA16, WEPMA17, WEPMA18

Boyden, D. MOPAC17

Bratton, R.E. WEPHO14

Brau, C.A. TUPSM24, THPAC22

Brennan, J.M. MOZAA2, TUXA1, WEPMA25, THPH007, THPH008

Brice, S. TUPBA20

Brindza, P.D. TUPAC28

Brooks, S.J. TUPBA13

Bross, A.D. TUODB4, TUPBA18, TUPBA20, WEPMA18, THPBA08, THPBA09, THPH017

Brouwer, L.N. TUPAC16, WEPBA12

Brown, K.A. MOPSM03

Brown, M. TUOAB1

Bruce, R. TUOCA1

Bruhwiler, D.L. M00CB2, MOPAC08, MOPBA17, MOPBA22

Bruno, D. TUOCA2, WEPHO05, WEPHO06, WEPHO07

Brutus, J.C. WEPAC06, WEPAC07, THPH006

Buaphad, P. MOPHO20, TUPSM14, THPSM16

Bui, H. THPAC08, THPH003

Bullock, B. WEPAC13

Bultman, N.K. WEOAB1, FRYBA1, MOPMA08, TUPSM20

Burby, J.W. TUPAC23

Burkhardt, E. WEPAC05

Burrill, A. WEZAA2

Butler, N. WEOCA1, THPBA11

Byer, R.L. M00BB2

Byllinskii, I.V. WEPHO01

Byrd, J.M. WEOAA1

Cadilhon, B. WEPHO02

Calabretta, L. MOPBA05

Calanna, A. MOPBA05

Calic, S. WEPHO01

Cancelo, G.I. TUODB2

Cappadoro, P.L. WEPSM15, THPAC09, THPAC11

Carcagno, R.H. THPBA15, THPBA16

Cardona, J.F. WEPBA01

Cargnelutti, M. TUPAC09, THPAC11

Carli, C. TUODB3

Carlsten, B.E. M00AB1, TUPAC18, TUPAC21, TUPMA11, TUPMA12

Carver, L.R. WEPMA27, WEPMA28, MOPBA02, WEPAC05

Cary, J.R. MOPAC09, MOPAC36

Casagrande, E. FRYBA1, THPBA13

Casey, P.W. TU0CB2

Caspi, S. TUPAC16, WEPBA12

Cassany, B. WEPHO02

Castilla, A. WEPAC39

Catelani, G. WEPAC12

Cesar, D.B. MOPAC27

Index
Cormier-Michel, E. M00CB2, MOPAC36
Cornacchia, M. FROAA1, TUPAC31
Cornelius, W. D. TUPSM29
Corwin, T.M.
Coskun, A.F.
Costanzo, M.R.
Cousineau, S.M.
Cowan, B.M.
Cowan, E.E.
Crawford, A.C.
Crawford, M.T.
Creely, P.
Crisp, J.L.
Crittenden, J.A.
Cultrera, L.
Cummings, M.A.C.
Current, M.I.
Cywinski, R.
Czajkowski, J.

— D —
D’Ambra, J.A.
D’Elia, A.
Dal Forno, M.
Dale, D.
Dallin, L.O.
Daniels, C.S.
Danilov, V.V.
Dash, R.
Davidsaver, M.A.
Davidson, A.W.
Davidson, K.D.
Davidson, R.C.
Davis, D.
Davis, J.
Dawson, W.C.
Day, A.L.
De Monte, V.
De Santis, S.
De Silva, S.U.
Decker, G.

Decyk, V.K.
DeFord, J.F.
DeGraff, B.D.
Dehnel, M.P.
Deibele, C.
Deitrick, K.E.
Dejus, R.J.
DeKamp, J.
Delahaye, J.-P.
Delayen, J.R.
Delgiusto, P.
Delp, W.W.

D’Ambra, J.A. TUPAC07
D’Elia, A. WEPMA01
Dal Forno, M. WEPHO01
Dale, D. WEP5M05
Daniels, C.S. WEOAA1
Danilov, V.V. M00DB1, WEPBA16
Dash, R. TUPAC02
Davidsaver, M.A. MOPAC39
Davidson, A.W. FRYBA1
Davidson, K.D. TUPAC22, TUPAC23, TUPAC24
Davidson, R.C. TUPMA05
Davis, D. WEPHO14
Davis, J. TUOCA2, WEPBA05
Dawson, W.C. TUPMA17, TUPMA21
Day, A.L. THPH008
De Monte, V. WE0AA1, WEPBA09
De Santis, S. WEPAC40, WEPAC41, WEPAC43
De Silva, S.U. WEOAA3, MOPHO08, WEP5M14, THPH008, THPH003
Decker, G. MOPAC47

Decyk, V.K. THPB29
DeFord, J.F. THPB28
DeGraff, B.D. THOA1
Dehnel, M.P. FRYBB2
Deibele, C. WEPAC42
Deitrick, K.E. WEP5M06, WEP5M08, WEP5M09, WEP5M10, THPH006
Dejus, R.J. FRYBA1, THPB12
DeKamp, J. THYAA2, THOCA1, MOPAC37, MOPAC38, MOPAC46, TUPBA17, TUPBA20
Delahaye, J.-P.
Delayen, J.R.
Delgiusto, P.
Delp, W.W.

MORAA1, MOOCB2, MOPAC36
FROAA1, TUPAC31
TUPSM29
WEPSM15, THPC09, THPC11, THPC14, THPC15
MOPAC42
TUOCA2
WE0DB2
MOPAC35, MOPAC36
TUPAC13
WEPC27, WEPAC28
TUPAC17
THOAB1
THPH014
WEPBA09
TUOAB1
THPSM17, TUPBA24
WEYB2
THOB2
TUPSM13

North American PAC 2013 87
Edelen, J.P. TUPSM09
Edwards, R.L. MOPAC25
Efremov, M.Y. TUPMA19
Eichhorn, G. WEPA11, WEPA13, THPMA07
Eichten, E. TUPBA20
Eisen, E.L. WEPHO08
Eisert, D. TUPMA19
Ekdahl, C. TUPAC17
Eksta, V.V. THPMA03
Eliasson, B. MOOCB1, MOPAC48
Elliott, K. FRYBA1, WEPA18
Ellison, J.S. MOPBA09
Elmore, B. WEPA13
Elson, S. MOPAC25
Emery, L. TUOB2, WE0AA3, MOPH008, MOPH009, TUPMA03, WEPSM06, WEPSM07, WEPSM12
Emma, P. WE0A1, MOPH012, MOPH015
Endo, A. THPSM03
England, R.J. MOOB2, THYAA2, TH0CA1, MOPAC28, MOPAC29, MOPAC31, MOPAC33, MOPAC37, MOPAC38, MOPAC46
Ent, R. TUPAC28
Erdelyi, B. MOPBA13, MOPBA15, MOPBA14, MOPBA16, THPH022
Erickson, N. TUOB1
Eriksson, M. MOPH065
Esarey, E. TH0CA2, MOPAC20
Escarlottier, J. WE0A1, TPHBA07
Eustice, S. TUPMA21
Evushenko, P.E. WEZAA1, WEPSM17

— F —
Fabris, A. WEPA01, WEPA02
Facco, A. FRYBA1, WEPAC63
Faillace, L. TUOB2, TH0AA2, TUPSM27, TUPSM28, WEPA24, THPAC28, THPAC29
Fang, Y. MOPAC02, MOPAC49
Fathy, A.E. WEPA22, WEPMA23
Fedotov, A.V. TUOAA1, MOPSM04, WEPBA08
Fedorin, M.G. MOPAC24, MOPAC49, MOPH019, TUOB08 WEYB2
Felch, S.B. FROA1, TUPMA17
Feldman, D.W. FRYAB2
Felice, H. WEPHO09, WEPA09
Ferguson, P. WEPSM15, THPAC09, THPAC10, THPAC11
Fernandes, H.C. TPH0085, TPH012
Fernow, R.C. FRYAB1
Ferracin, P. WEOA1
Filippetto, D. FROA1, TUPAC34, TUPMA18, WEPA20
Fiorito, R.B. TUPSM13
Firebaugh, J.D. TUXA1, TU0CA2, MOPSM03, TUPBA06, TUPBA07, TPH001, TPH010
Fischer, W.
Fisher, A.S. THYAA2, THOCA1, MOPAC38, MOPAC46
Fisher, M.V. TUPMA19
Fisher, S.E. MOPAC43
Fitsos, P. TPHMA14
Flanagan, G. WEPMA15, WEPMA17, THPBA21, THPBA22, THPBA23, THPBA24, THPBA26
Filler, R.P. TUPMA05, TUPMA06, TUPMA07, THPAC10
Floyd, J.G. WEOAA1
Foley, M.H. WEPAC25
Folkman, K. TUPSM14
Fonseca, R.A. MOPAC39, MOPAC47
Forest, F. TPHBA03
Forst, T. TPH003
Fortgang, C.M. MOPMA14, MOPMA17, MOPSM05, TUPSM16, TUPSM17, TUPSM18
Fox, A.D. WEPAC20, TPHBA13
Fox, J.D. FROAA3, TUPAC25
Fraik, B. TUOCA2, TUPH001
Frazee, R. MOPMA08
Frederico, J.T. THYAA2, THOCA1, MOPAC37, MOPAC38, MOPAC46, MOPAC40
Freemire, B.T. TUODA1, MOPBA06, WEPMA12, WEPMA17
Freyberger, A. TPHMA13
Frigola, P. MOPHO25, TUPSM27, WEPMA24
Frisch, J.C. FRTB1
Frolov, D. TPHBA17
Fu, S. MOZBA2, TUODB1
Fuest, J.D. WEPAC01, TPHAC07
Fujimoto, T. FRXB1
Fujita, T.F. FRXB1
Fujiwara, T. TPSM02
Fukuda, M.K. TUPMA01
Full, S.J. TUOBA1
Furukawa, T. FRXB1
Furuta, F. TPHMA07

Gabella, W.E. TPHAC22, TUPSM24
Gabriel, G. TUOAB1
Gagliano, J. WEOAA3
Gai, W. MOPAC06, MOPAC11, MOPhO19, MOPSM09, TUPMA08, TUPSM05, WEPMA08
Galambos, J. FRYAA1, WEPBA16
Galt, M.D. TPHAC19
Gamage, B.R.P. TPHHO21
Ganetis, G. WEPOH05
Ganni, V. FRYBA1
Gao, F. MOPHO16
Gao, J. TUPBA03
Garcia-Bonilla, A.C. WEPPBA01
Gardner, C.J. MOPSM03
Garnett, R.W. MOPMA14, MOPMA17, MOPSM05, TUPSM16, TUPSM17, TUPSM18
<table>
<thead>
<tr>
<th>Name</th>
<th>Conference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guo, Y.Y.</td>
<td>TUPBA03</td>
</tr>
<tr>
<td>Guo, Z.</td>
<td>THPSM04</td>
</tr>
<tr>
<td>Gupta, L.</td>
<td>MOPHO18</td>
</tr>
<tr>
<td>Gupta, R.C.</td>
<td>THPBA24, THPBA25</td>
</tr>
<tr>
<td>Gurov, S.M.</td>
<td>MOPBA01</td>
</tr>
<tr>
<td>Haase, A.A.</td>
<td>WEPMA18</td>
</tr>
<tr>
<td>Haber, I.</td>
<td>FROAA1, TUPAC32, THPBA20</td>
</tr>
<tr>
<td>Haeuser, J.</td>
<td>MOPMA14, MOPMA17</td>
</tr>
<tr>
<td>Hahn, H.</td>
<td>TPHHO10</td>
</tr>
<tr>
<td>Haj, M.</td>
<td>MOPBA05</td>
</tr>
<tr>
<td>Hall, D.L.</td>
<td>THPMA07</td>
</tr>
<tr>
<td>Hall, M.</td>
<td>THPMA14</td>
</tr>
<tr>
<td>Hall, M.I.</td>
<td>MOPMA15</td>
</tr>
<tr>
<td>Hallman, E.J.</td>
<td>MOPAC36</td>
</tr>
<tr>
<td>Hama, H.</td>
<td>THPBA03</td>
</tr>
<tr>
<td>Hamdi, K.</td>
<td>TUOCA2, TUPHO01, THPH009</td>
</tr>
<tr>
<td>Hamm, R.W.</td>
<td>FRZAP1</td>
</tr>
<tr>
<td>Hammond, N.P.</td>
<td>MOOAB2</td>
</tr>
<tr>
<td>Hanlet, F.M.</td>
<td>TUODA1, TUPSM15, WEPMA03, WEPMA16, WEPMA17</td>
</tr>
<tr>
<td>Hao, Y.</td>
<td>TUPBA13</td>
</tr>
<tr>
<td>Hara, Y.</td>
<td>FRXBI</td>
</tr>
<tr>
<td>Harder, D.A.</td>
<td>WEPSM15, TPHAC11, TPHAC14, TPHAC15</td>
</tr>
<tr>
<td>Harkay, K.C.</td>
<td>WEOAA3, WEPSM06, WEPSM07, TPHAC06, TPHAC07</td>
</tr>
<tr>
<td>Harkins, J.P.</td>
<td>WEOAA1</td>
</tr>
<tr>
<td>Harmon, E</td>
<td>THPSM20</td>
</tr>
<tr>
<td>Harms, E.R.</td>
<td>WEPAC29</td>
</tr>
<tr>
<td>Harris, J.R.</td>
<td>MOPAC07, TUPSM09, WEPSM17, TPHAC19</td>
</tr>
<tr>
<td>Harrison, M.A.</td>
<td>MOPBA17, MOPHO25, TPHAC30</td>
</tr>
<tr>
<td>Hartemann, F.V.</td>
<td>TUPMA10</td>
</tr>
<tr>
<td>Hartzell, J.J.</td>
<td>TUA02B, WEOCA2, T00AA2, WEPBA18, TPHAC29</td>
</tr>
<tr>
<td>Harwood, L.</td>
<td>MOZAA1, WEA2A2</td>
</tr>
<tr>
<td>Hasse, Q.B.</td>
<td>WEOAA3, TPHAC07</td>
</tr>
<tr>
<td>Hast, C.</td>
<td>WEOBA1, TPHAC27</td>
</tr>
<tr>
<td>Haynes, W.B.</td>
<td>WEPAC33</td>
</tr>
<tr>
<td>He, P</td>
<td>WEPSM15, TPHAC09, TPHAC11, TPHAC14, TPHAC15</td>
</tr>
<tr>
<td>He, Y.</td>
<td>WEPAC11, THPMA07</td>
</tr>
<tr>
<td>He, Y.</td>
<td>THPSM04</td>
</tr>
<tr>
<td>He, Z.Q.</td>
<td>TUPAC14, WEPAC03, WEPBA11, TPHHO01</td>
</tr>
<tr>
<td>Heath, C.E.</td>
<td>MOCC25</td>
</tr>
<tr>
<td>Hegelich, B.M.</td>
<td>WEOCB1</td>
</tr>
<tr>
<td>Held, B.L.</td>
<td>THPBA29</td>
</tr>
<tr>
<td>Hemsing, E.</td>
<td>TPHAC27</td>
</tr>
<tr>
<td>Henderson, S.</td>
<td>MOXAP1, MOPAC16</td>
</tr>
<tr>
<td>Henry, J.</td>
<td>WEPAC47</td>
</tr>
<tr>
<td>Henry, P.F.</td>
<td>MOPMA04</td>
</tr>
<tr>
<td>Heppner, G.</td>
<td>WEPHO07</td>
</tr>
<tr>
<td>Hertlein, M.P.</td>
<td>MOPHO22</td>
</tr>
<tr>
<td>Hester, T.</td>
<td>TUPBA16</td>
</tr>
<tr>
<td>Hettel, R.O.</td>
<td>MOYAB1</td>
</tr>
<tr>
<td>Hidding, B.</td>
<td>MOOCB2</td>
</tr>
</tbody>
</table>

92 Pasadena, CA, USA, 29 September–4 October 2013
Higashi, N.
Hill, W.T.
Hinode, F.
Hirshfield, J.L.
Ho, K.M.V.
Ho, L.V.
Hoang, P.D.
Hock, J.
Hocker, A.
Hodgetts, T.J.
Höfle, W.
Hoff, L.T.
Hoff, M.D.
Hoffstaetter, G.H.
Hofler, A.S.
Hogan, J.
Hogan, M.J.
Holland, K.
Holland, P.R.N.
Holm, A.I.S.
Holmes, A.D.
Holmes, J.A.
Holmes, S.D.
Holzbauer, J.P.
Honda, Y.
Hopper, C.S.
Horak, W.
Hovater, C.
Howell, M.P.
Hrovatin, R.
Hu, X.M.
Hua, J.F.
Huang, C.
Huang, G.
Huang, H.
Huang, T.
Huang, W.-H.
Huang, Y.
Huang, Z.
Huber, P.
Hughes, C.
Hulsart, R.L.
Hummelt, J.S.
Hunziker, S.
Hutton, A.
Hyde, C.
Insepov, Z.
Ishibori, I.
Ishizaka, T.
Ivanov, B.L. THPAC22
Ivanov, E.V. WEPHO03, WEPHO04
Ivanyushenkov, Y. WEOA3, FRYBB1, WEPSM06, THPAC07
Ives, R.L. TUPMA17, WEPHO08, WEPHO09, WEPMA09
Iwata, Y. FRXB1

Jackson, R.H. WEPHO09
Jacobs, K. MOPHO26, TUPMA19
Jacobson, B.T. TUOB4, THPAC31
Jain, A.K. TUOCA2, WEODA1, WEPSM15, THPBA07
James, G. THOAB1
James, S. WEPSM19
Jamilkowski, J.P. TUOCA2
Jana, M.R. TUODA1, WEPMA12, WEPMA17
Jarvis, J.D. TUPSM24
Jaski, M.S. WEPSM06, WEPSM08, WEPSM09, WEPSM10, WEPSM11, THPAC06
Jaski, Y. WEPSM14
Jecks, R. WEPAC06
Jehanno, P. THPBA03
Jensen, K. L. TUOCA17, TUPMA21
Ji, Q. WEOBB2
Jia, Q.K. MOPHO27
Jiang, H. TUODB1
Jiang, Y. MOPBA02, WEPHO20, WEPMA27, WEPMA28, THPAC05
Jimbo, K. WEPBA02, THPHO01
Jing, C.-J. MOPAC06, TUPSM05, WEPAC16, WEPMA08, MOPAC11, MOPAC12, MOPHO19, TUPMA08
Jivkov, P. THPBA03
Jobe, R.K. WEOBA1
Johnson, C.A. TUPSM22
Johnson, D.E. THPAC21
Johnson, J.B. THPAC24
Johnson, M.J. FRYBA1, WEPAC20, THPBA13, TUPSM20
Johnson, R.P. TUODA1, MOPAC26, MOPBA12, TUPSM22, WEPHO15, WEPSM15, THPBA21, THPBA22, THPBA23, THPBA26, THPHO19, THPHO20
Jones, R.M. WEPMA27, WEPMA28, MOPBA02, TUPAC07, THPAC05
Jones, S. FRYBA1
Jongen, Y. THYBB1
Joshi, C. THYAA2, THOCA1, MOPAC02, MOPAC03, MOPAC04, MOPAC05, MOPAC21, MOPAC22, MOPAC37, MOPAC38, MOPAC39, MOPAC40, MOPAC42, MOPAC44, MOPAC45, MOPAC46
Joung, M.J. WEPAC04
Jug, G. THPAC04
Jung, J.-Y. WEOAA1
Kaducak, M. MOPMA09, THPBA22, THPBA24, THPBA25, THPBA26, THYAB1
Kahn, S.A. MOPAC11, MOPAC12, MOPHO19, TUPMA08, WEPAC14, WEPAC15, WEPAC16, TUB2
Kaissl, W. THPBA26, THYAB1, TUB2
Kanareykin, A. WEPAC14, WEPAC15, WEPAC16, TUBA1
Kang, H.-S. WEPMA22, WEPMA23
Kang, Y.W. THPBA05, TUPMA05
Kanjiilal, D. TUPAC08
Kankiya, P. WEPMA22, WEPMA23
Kaplan, D.M. THPBA18, WEPMA08
Kara, A. WEPMA14, WEPMA15
Karimov, R. WEPMA14, WEPMA15
Karkare, S.S. WEPAC14, WEPAC15, WEPAC16
Karl, F.X. WEPAC14, WEPAC15, WEPAC16
Karlppinen, M. THPBA18, WEPMA14
Kasa, M. WEPMA14, WEPMA15
Kashikhin, V.S. WEPMA14, WEPMA15
Kashikhin, V.V. WEPMA14, WEPMA15
Kasley, PA. WEPAC14, WEPAC15
Katsouleas, T.C. MOPAC10
Kaufman, J.J. WEPAC13, MOOAB2
Kay, J. MOPAC10, WEPAC13
Kayran, D. MOOAB2
Kazakevich, G.M. WEPMA14, WEPMA15
Kazakov, S. THPBA05, TUPMA05
Keane, R.T. WEPAC13
Kedzie, M. WEPBA05
Keister, J.W. WEPMA17, WEPAC15
Kelly, M.P. WEPAC17, WEPAC15
Kempkes, M.K. WEPSM06
Kephart, R.D. WEPAC17, WEPAC15
Kewisch, J. WEPAC17, WEPAC15
Khabiboulline, T.N. WEPAC17, WEPAC15
Khalil, N.Z. WEPAC17, WEPAC15
Khan, S.A. MOPMA09
Kharkov, Y. MOPMA09
Kim, A. TUPMA18, TUPMA21
Kim, D.G. MODDB2, TUPAC30
Kim, E.H. TUOAB1, TUPAC08
Kim, H.J. TUPAC08, WEPAC04
Kim, J.-W. TUPAC08, WEPAC04
Kim, J.Y. TUPAC08, WEPAC04
Kim, K.-J. TUPAC08, WEPAC04
Kim, M. TUPAC08, WEPAC04
Kim, M. TUPAC08, WEPAC04
Kim, S.-H. WEPAC04, WEPAC32
Kim, S.H. WEPAC04, WEPAC32
Kim, Y. WEPAC04, WEPAC32

Index

North American PAC 2013 95
King, J.R.
Kirk, H.G.
Kirleis, A.I.
Kirz, J.
Kiselev, V.A.
Kishek, R.A.
Kitegi, C.A.
Kiupele, G.
Klaus, A.
Klebaner, A.L.
Klein, M.
Kleman, K.J.
Kling, N.A.
Klingbeil, H.
Knyazik, A.
Ko, C.
Koeth, T.W.
Koiso, H.
Kolski, J.S.
Kondratenko, A.M.
Koop, I.
Koscielniak, S.R.
Kosciuk, B.N.
Koshiba, Y.
Kostin, R.A.
Kostroun, V.O.
Kotelnikov, S.
Kotzian, G.
Kourbanis, I.
Kovach, P.
Koyama, K.
Kozyrev, A.B.
Krafft, G.A.
Krasnov, A.A.
Krause, S.W.
Krave, S.
Krawczyk, F.L.
Kruy, T.L.
Kubo, K.
Kudinovich, I.V.
Kürzeder, T.
Kulesza, J.D.
Kumar, S.
Kumura, T.
Kunz, J.D.
Kurennoy, S.S.
Kuroda, R.
Kutsche, K.
Kustom, R.
Kutsaev, S.V.
Kuzikov, S.V.
Kwan, T.J.
Kwiatkowski, S.
MOPBA23
TUPBA09, TUPBA10, TUPBA11, TUPBA20, TUPHO02, TUPHO11, THPMA10, THPMA11, THPMA12
TUPBA02
MOPHO22
MOPBA01
FROAA1, TUPAC34, WEPBA20
WEPSM15, TPHAC09, TPHAC11, TPHAC14, TPHAC15
THPH014
THPMA01
WEAOA1
MOPBA19
TUPMA19
TUXA1
THPMA01
THPAC27
MOPBA18
FROAA1, TUPAC32
WEODA1, TPHBA04, TPHBA07
MOPMA15, TUPAC19, TUPAC20
TUPHO03
MOOA2, WEPBA04
MOOBAB1, WEPHO01
THPAC09, TPHAC10
WEODA2
THOBA4
WEODA14
WEPAC15
TUPHO03, THPMA13
WEPO03, WEPHO04
MOPSM07, TPHO14
THPBA22
TUPMA11, TUPMA12
MOPBA03, WEPBA06, WEPBA07
WEPSM14
TUPBA25
THPS09
WEPC13
WEPSM15, TPHAC11
TUPAC03
WEPHO08
WEPBA10
MOPMA14, MOPMA16, MOPMA17, MOPSM05, TUPMA12, TUPSM16, TUPSM17, WEPAC33
WEODA2, WEOB1
MOPAC49
WEPSM06, WEPSM07
WEPMA05, WEPMA06
WEPSM02, WEPMS03, WEPMS04
MOPAC23, TUPAC18, TUPMA13
THPMA09
Kyrpotin, A.N.

— L —

Laird, R.
Lalllement, J.-B.
Lambert, A.R.
Lambiasi, R.F.
Lamm, M.J.
Lang, J.C.
Lanzoni, J.A.
Lapi, S.E.
Lapiere, A.
LaPointe, M.A.
Larose, H.
Lawler, J.E.
Lawton, D.
Laxdal, R.E.
Leban, P.
Lebedev, V.A.
Lebrun, P.
Lee, C.
Lee, H.-J.
Lee, K.H.
Lee, S.-H.
Lee, S.-Y.
Leemann, S.C.
Leemans, W.
Lefferts, R.S.
Legg, R.A.
Leitner, D.
Leitner, M.
Lemos, N.
Lemut, P.L.
Lenkszus, F.
Leonova, M.A.

— M —

Li, C.
Li, D.

North American PAC 2013 97
<table>
<thead>
<tr>
<th>Name</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ludewigt, B.A.</td>
<td>WEOBB2, WEOAA1, WEPMA16, WEPMA18, WEPMA26</td>
</tr>
<tr>
<td>Luo, T.H.</td>
<td>MOPAC42</td>
</tr>
<tr>
<td>Luo, W.</td>
<td>TUXA1, TUOCA2, TUPBA04, TUPBA07, TUPBA09, TUPH001</td>
</tr>
<tr>
<td>Luo, Y.</td>
<td>MOPSM01</td>
</tr>
<tr>
<td>Lyles, J.T.M.</td>
<td>WEPHO14</td>
</tr>
<tr>
<td>Lysenko, A.P.</td>
<td>MOOA2</td>
</tr>
<tr>
<td>Macek, R.J.</td>
<td>TUPAC19, TUPAC20</td>
</tr>
<tr>
<td>Machicoane, G.</td>
<td>WEOA1, WEOA2, FRYBA1</td>
</tr>
<tr>
<td>Macridin, A.</td>
<td>MOYBB2</td>
</tr>
<tr>
<td>Madrak, R.L.</td>
<td>WEPMA13, WEPMA14</td>
</tr>
<tr>
<td>Madur, A.</td>
<td>TUOCB2</td>
</tr>
<tr>
<td>Maglich, B.C.</td>
<td>TUPBA16</td>
</tr>
<tr>
<td>Magsig, C.</td>
<td>THPBA12</td>
</tr>
<tr>
<td>Maharjan, C.</td>
<td>MOPAC34</td>
</tr>
<tr>
<td>Mahler, G.J.</td>
<td>WEPC01, WEPC47</td>
</tr>
<tr>
<td>Makarov, A.V.</td>
<td>WEPMA14</td>
</tr>
<tr>
<td>Makdisi, Y.</td>
<td>MOPBA05</td>
</tr>
<tr>
<td>Makino, K.</td>
<td>THPBA15</td>
</tr>
<tr>
<td>Makulski, A.</td>
<td>WEPC17, WEPC18</td>
</tr>
<tr>
<td>Malloch, I.M.</td>
<td>MOPAC49</td>
</tr>
<tr>
<td>Malone, R.</td>
<td>TPHO020</td>
</tr>
<tr>
<td>Maloney, J.A.</td>
<td>TUOBB3</td>
</tr>
<tr>
<td>Malyzhenkov, A.</td>
<td>WEPOH01</td>
</tr>
<tr>
<td>Mammarella, F.</td>
<td>WEPC01, WEPC47</td>
</tr>
<tr>
<td>Mammosser, J.D.</td>
<td>THPSM020</td>
</tr>
<tr>
<td>Mamtimin, M.</td>
<td>TUPAC03</td>
</tr>
<tr>
<td>Mandal, A.</td>
<td>TUOCA2, TUPH001</td>
</tr>
<tr>
<td>Mapes, M.</td>
<td>WEOA1</td>
</tr>
<tr>
<td>Marcus, G.</td>
<td>WEPMA15, THPBA22</td>
</tr>
<tr>
<td>Marhauser, F.</td>
<td>TUPBA25</td>
</tr>
<tr>
<td>Marín, E.</td>
<td>THPAC27</td>
</tr>
<tr>
<td>Marinelli, A.</td>
<td>M00A1</td>
</tr>
<tr>
<td>Marksteiner, Q.R.</td>
<td>TUOCA2, WEOA1, THPBA07</td>
</tr>
<tr>
<td>Marone, A.</td>
<td>TUOAA2</td>
</tr>
<tr>
<td>Marr, G.J.</td>
<td>WEPH008, WEPH009, WEPMA09</td>
</tr>
<tr>
<td>Marsden, D.</td>
<td>THYAA2, THOCA1, MOPAC02, MOPAC21, MOPAC22, MOPAC37, MOPAC38, MOPAC40, MOPAC45, MOPAC46</td>
</tr>
<tr>
<td>Marsh, K.A.</td>
<td>TUPMA10</td>
</tr>
<tr>
<td>Marsh, R.A.</td>
<td>MOPSM09</td>
</tr>
<tr>
<td>Marshall, T.C.</td>
<td>FRYBA1</td>
</tr>
<tr>
<td>Marti, F.</td>
<td>WEPMA18</td>
</tr>
<tr>
<td>Martin, D.W.</td>
<td>MOPMA15</td>
</tr>
<tr>
<td>Martínez, M.P.</td>
<td>MOPAC39</td>
</tr>
<tr>
<td>Martins, J.L.</td>
<td>TUPBA04, TUPBA05, TUPBA06, TUPBA08</td>
</tr>
<tr>
<td>Marusic, A.</td>
<td>THOCA2</td>
</tr>
<tr>
<td>Matlis, N.H.</td>
<td>THOBA4</td>
</tr>
<tr>
<td>Matsumura, Y.</td>
<td>WEOBA1</td>
</tr>
<tr>
<td>Maxwell, T.J.</td>
<td>WEOAA2, MOPH018</td>
</tr>
<tr>
<td>Mayes, C.E.</td>
<td>TUPAC06</td>
</tr>
<tr>
<td>McAttee, M.J.</td>
<td>WEOBA1</td>
</tr>
<tr>
<td>McCormick, D.J.</td>
<td></td>
</tr>
</tbody>
</table>
Moody, J.T. MOPAC43
Moog, E.R. WEPSM08, WEPSM09, WEPSM10
Moore, T.P. TU0BA1, TU0BA1
Moretti, A. TU0DA1, WEPSMA03, WEPSMA07, WEPSMA12, WEPSMA15, WEPSMA16, WEPSMA17, WEPSMA18
Morgan, G. WEOAB1
Morgan, J.P. MOPMA21
Mori, S. FRXB1
Mori, W.B. THYAA2, THOCA1, MOPAC02, MOPAC03, MOPAC04, MOPAC05, MOPAC10, MOPAC37, MOPAC38, MOPAC39, MOPAC46, MOPAC47, MOPAC49
Morita, A. WEODA1, TYPBA04, TYPBA07
Morozov, I.A. M00DB2, TUPAC30
Morozov, V.S. TUPAC27, TUPAC28, TUPH003, TUPH019, TUPH020, TUPH022
Morris, D. FRYBA1, TYPMA02
Morrissey, D.J. TYPBA12
Mu, Z.C. TU0DB1
Muggli, P. MOOBB1, THYAA2, THOCA1, MOPAC02, MOPAC37, MOPAC38, MOPAC46, MOPAC49
Muller, E.M. TYPAC17
Munroe, B.J. THOBA1, MOPSM06, WEPBA14
Murakami, T.M. FRXB1
Muriki, K. WEPSM19
Murokh, A.Y. TU0AB2, THOAA2, MOPH025, WEPBA17, WEPSMA24, TYPAC28, TYPAC29, TYPAC30, TYPAC36, TYPMSM18
Murphy, K. MOPAC19
Murphy, R.C. WEOAB2
Murray, S.N. TUPSM22
Musardo, M.M. WEPSM15, TYPAC11, TYPAC14, TYPAC15
Mustapha, B. WEODA2, MOPMA06, MOPSM02, WEPMA05, WEPMA06
Musumeci, P. TU0BB4, THOAA1, MOPAC27, MOPAC43, TUPAC29, TUPSM03, TUPSM28, TYPAC37, TYPH007, TYPH008
Myers, M.

— N —
Nadel-Turonski, P. TUPAC28
Nagaitsev, S. M00DB1, M00DB2, TUYA1, MOPAC13, MOPAC16, MOPMA09, TUPAC30, WEPBA16, WEPBA17
Najmudin, Z. MOPAC34, TYPMSM12, TYPMSM13
Nakamura, K. THOCA2
Nakao, M. WEPBA02, TYPH001
Nantista, C.D. WEOA1
Naranjo, A.C. WEPH014
Naranjo, B. MOPAC08
Naseri, N. MOPAC36
Nash, L.M. WEPSM07, TYPH014
Nash, S. WEPC01, WEPC02, WEPC44
Nassiri, A.
Nayak, S.K. THPHO10
Nehring, R. THPBA15
Neil, G. WE0AA1, WEP3M17
Nemesure, S. TU0CA2, TUPH001
Nenasheva, E. WEPAC15
Nesmiyan, I. TUPAC07
Neubauer, M.L. WEPH016, WEPH017, WEPH018
Neuffer, D.V. TUPBA11, TUPBA17, TUPBA18, TUPBA20, TUPH011, TPH017, TPH019
Neustadt, T.S. THPBA28
Newsham, D.J. WEPH013, WEPMA11, THPSM14
Ng, C.-K. WE0AA1, MOPAC31, MOPBA18, WEPAC44, WEPAC45, WEPAC46
Tu0CA2, WEPH007
Ng, W. TUPAC07
Nguyen, C. MOPMA08
Nguyen, P. TUPBA29
Nichols, A.A. THPSM12
Nichols, R.M. TUPMA09
Nicol, T.H. TUPMA15
Niell, E.M. WEPH011
Nieter, C. MOPBA21, TUPMA15, TUPSM30
Nikolskiy, K.I. WEPH003, WEPH004
Nipper, J.H. WEPMA15
Nishimura, H. TUPAC07, WEOAA1, MOPHO23, WEP3M19
Nishimura, Y. TUPSM01
Nishiyama, M. TUPSM01
Nissen, E.W. TUPH003, TUPH005
Nobrega, A. MOPAC28, MOPAC31, MOPAC33
Noda, A. WEPBA02, TUPH001
Noda, K. FRX1
Nogiec, J.M. TUPMA07
Nolen, J.A. FRYBA1
Nonomura, K. THPSM03
Norem, J. WE0AA1
Novitski, I. THPBA18
Novokhatski, A. WEPBA08
Nuhn, H.-D. WE0AA1
Nunes, R.P. MOPAC01
Nurkenov, S. WEPMA07

— O —

O’Connel, T. WEPAC11
O’Connell, T.J. TUPMA07
O’Hara, J.F. MOPMA14, MOPMA05, TUPSM16, WEPAC33, THPAC23
O’Neill, C. TUPSM14
O’Shea, E.H. MOPH025, WEPB17, THPAC36
Obana, T. FRX1
Oddo, P. WEPBA05
Oganesyan, K.B. MOPH001, MOPH002, MOPH003
Ogitsu, T. FRX1
Ohnishi, Y. WE0DA1, TUPHA04, TUPHA07
Ohuchi, N. WE0DA1, THPBA04, TUPBA07
Oide, K. WE0DA1, TUPHA04, TUPHA07
Okamoto, H. TUPH001
Okugi, T. TUPBA25

Pasadena, CA, USA, 29 September–4 October 2013
<table>
<thead>
<tr>
<th>Name</th>
<th>Conference Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okumura, S.</td>
<td>THPSM01</td>
</tr>
<tr>
<td>Olave, R.G.</td>
<td>WEPA43</td>
</tr>
<tr>
<td>Olivas, E.R.</td>
<td>MOPMA16, MOPSM05, WEPAC33</td>
</tr>
<tr>
<td>Olivas, P.D.</td>
<td>WEPH014</td>
</tr>
<tr>
<td>Olsen, R.H.</td>
<td>TUPH001</td>
</tr>
<tr>
<td>Olsson, T.</td>
<td>TUPMA02</td>
</tr>
<tr>
<td>Orel, P.</td>
<td>TPHMA04</td>
</tr>
<tr>
<td>Orfin, P.</td>
<td>TPH006</td>
</tr>
<tr>
<td>Orikasa, T.</td>
<td>FRXB1</td>
</tr>
<tr>
<td>Orlov, Y.</td>
<td>WEPAC29, THPMA09</td>
</tr>
<tr>
<td>Orris, D.F.</td>
<td>TPHBA15, TPHBA16</td>
</tr>
<tr>
<td>Osaki, K.</td>
<td>TPH001</td>
</tr>
<tr>
<td>Ostiguy, J.-F.</td>
<td>MOPMA13</td>
</tr>
<tr>
<td>Ostellom, P.N.</td>
<td>WEOAB2, MOPMA06, MOPSM02, WEPAC05, WEPMA05, WEPMA06</td>
</tr>
<tr>
<td>Ottarson, J.</td>
<td>THPBA12</td>
</tr>
<tr>
<td>Ouyang, H.F.</td>
<td>TU0DB1, THPSM04</td>
</tr>
<tr>
<td>Ovalle, E.</td>
<td>MOZBA1</td>
</tr>
<tr>
<td>Ovsyannikov, D.A.</td>
<td>THPSM09</td>
</tr>
<tr>
<td>Ozcan, A.</td>
<td>MOPAC42</td>
</tr>
<tr>
<td>Ozelis, J.P.</td>
<td>FRYBA1</td>
</tr>
<tr>
<td>Padmore, H.A.</td>
<td>WEOAA1, THPAC12, THPAC17</td>
</tr>
<tr>
<td>Pai, C.</td>
<td>WEPBA05, TPH009</td>
</tr>
<tr>
<td>Pak, A.E.</td>
<td>MOPAC21</td>
</tr>
<tr>
<td>Pakter, R.</td>
<td>MOPAC01</td>
</tr>
<tr>
<td>Palmer, M.A.</td>
<td>MOYAA2, TUPBA17, TUPBA20, WEPMA18</td>
</tr>
<tr>
<td>Palmer, R.B.</td>
<td>TUPMA17, TUPMA18</td>
</tr>
<tr>
<td>Pan, PZ.</td>
<td>MOPMA18, TUPSM19</td>
</tr>
<tr>
<td>Pang, X.</td>
<td>TUPSM24, TUPSM25</td>
</tr>
<tr>
<td>Panuganti, H.</td>
<td>WEOAA1, TUPMA09</td>
</tr>
<tr>
<td>Papadopoulos, C. F.</td>
<td>MOYAA1</td>
</tr>
<tr>
<td>Papotti, G.</td>
<td>WEOAA1</td>
</tr>
<tr>
<td>Pappas, G.C.</td>
<td>MOPSM01</td>
</tr>
<tr>
<td>Pardo, R.C.</td>
<td>WEOAA1, TUPBA23</td>
</tr>
<tr>
<td>Paret, S.</td>
<td>TUPMA09</td>
</tr>
<tr>
<td>Paret, Z.</td>
<td>WEPAC40, WEPAC41</td>
</tr>
<tr>
<td>Park, H.</td>
<td>TPHAC36</td>
</tr>
<tr>
<td>Park, J.</td>
<td>TUPSM04</td>
</tr>
<tr>
<td>Park, J.H.</td>
<td>WEODA1, THOAB2, TUPBA13, TUPBA15, TPHBA07, WEPH015, WEPMA03, WEPMA16, WEPMA18</td>
</tr>
<tr>
<td>Parker, B.</td>
<td>WEPAC31, THPMA09</td>
</tr>
<tr>
<td>Pasquinelli, R.J.</td>
<td>THPH002, THPSM11</td>
</tr>
<tr>
<td>Passarelli, D.</td>
<td>MOPSM03, WEPMA25</td>
</tr>
<tr>
<td>Pasternak, J.</td>
<td>THPSM04</td>
</tr>
<tr>
<td>Peggs, S.</td>
<td>FRZBP1</td>
</tr>
<tr>
<td>Pei, S.</td>
<td>TU0DB1</td>
</tr>
<tr>
<td>Pellegrini, C.</td>
<td>FRYBA1</td>
</tr>
<tr>
<td>Peng, J.</td>
<td>WEODA1</td>
</tr>
<tr>
<td>Peng, S.</td>
<td>TUPSM22</td>
</tr>
<tr>
<td>Penn, G.</td>
<td>FRYBB2</td>
</tr>
<tr>
<td>Pennisi, T.R.</td>
<td>M00BB2, MOPAC28, MOPAC33</td>
</tr>
</tbody>
</table>
Perdikakis, G. MOPMA07, MOPSM07
Perevedentsev, E. MOOAA2, WEPBA04
Perry, A. MOPMA06
Peterson, D.W. WEPMA03, WEPMA16, WEPMA17, THPMA08
Peterson, T.J. WEOAA1, WEPAC25, THPMA09
Petrichenkov, M. THPMA03
Pfeffer, H. TUPMA22
Phillips, D. TUPMA22
Phillips, R.A. WEPHO12
Piech, J.E. TUPSM10
Pieck, M. TUPSM16
Pigeon, J.J. MOPAC41, MOPAC42, MOPAC44
Pikin, A.I. TUOCA2, TUPHO01, TUPSM06, TUPSM08
Pile, P.H. MOPSM03, WEPBA05
Piller, C. TUPSM22
Pinayev, I. TUOAA1, MOPSM04, WEPAC06, WEPAC07, WEPBA08, THPHO06
Pindyurin, V.F. THPMA03
Piot, P. MOZBB1, MOPAC14, TUPAC21, TUPSM24, TUPSM25, MOPAC15
Pischalnikov, Y.M. WEPAC24, WEPAC26, WEPAC29
Pitcher, E.J. TUYAA2, MOPMA04
Pivi, M.T.F. MOPBA08
Placidi, M. WEPA04
Plate, S.R. WEOAA1
Podobedov, B. WEODB1
Pogorelov, I.V. MOPBA22, MOPBA23, TUPH002
Pogorelsky, I. MOPAC34
Pogue, C.M. MOPH024
Pogue, N. THODA2
Polikhov, S.A. WEPHO03, WEPHO04
Pollock, B.B. MOPAC21, MOPAC22
Pollock, K.M. FROAA3
Poly, C.E. MOPMA21
Poloubotko, V. WEPAC26, THPMA09
Polozov, S.M. WEOCB2, TUPSM08
Polyanskiy, M.N. MOPAC34
Poole, B.R. MOPAC07
Poor Režaei, K. FROAA1, WEPBA20
Popielarski, J. FRYBA1
Popielarski, L. FRYBA1, WEPAC17
Popov, M. WEPSM15
Popovic, M. WEPMA15
Portillo, M. MOPMA07
Portmann, G.J. MOPH022
Posen, S. WEZBA1, THOBA2, WEPAC12, WEPAC13, THPMA07
Posocco, P.A. THOB1, MOPMA05, THPSM10, THPSM11, THPSM12, THPSM13
Potkins, D.E. THOAB1
Potts, R.E. WEODB2
Power, J.G. MOPAC06, MOPAC12, MOPSM09, TUPSM05, WEPMA08
Powers, T. WEOAA1
Pozdeyev, E. WEOAB1, FRYBA1, WEPAC19
Pozimski, J.K. MOPMA05, THPSM12
Preble, J.P. WEOAA1

104 Pasadena, CA, USA, 29 September–4 October 2013
Index

Premo, K.S. WEPAC26, WEPAC29
Prestemon, S. WEOAA1
Previtali, V. TUOCA1
Pribaz, F. WEPMA02
Prieto, P.S. TUPSM13, THPAC21
Pronitchev, O. TUPAC21, TUPSM25
Prongash, V.S. THPMA09
Prost, L.R. WEPA14
Prosvetov, V.P. TUPBA13, TUPBA15, TUPBA26
Pulampong, T. M00AA2

Qi, M. MOPAC28, MOPAC29, MOPAC33
Qian, H.J. WEAA1, TUPMA09
Qiang, J. WEAA1, MOPBA07, TUPBA23, WEPSM18
Qiao, S. WEPMA01
Qin, H. TUPAC22, TUPAC23
Qin, Q. TUPBA01, TUPBA03
Qin, Y. WEPSM19
Qing, Q. TUPBA02
Quigley, P. WEPAC11, THPMA07

Rabehl, R. TUPSB3, TUPAC06
Raginell, V. TUPSM06, TUPSM08
Rahman, O.H. MOZBA1
Raich, U. THPAC09, THPAC14, THPAC15
Takowsky, G. TUPSM14
Ralph, J. MOPAC21, MOPAC22
Ralph, J.E. FROAA2, TUPBA02
Ranjar, V.H. WEPSM15, THPAC09, THPAC10
Rank, J. THPAC11, THPAC15
Rao, T. MOPMA21, TUPSM06, TUPSM08
Rao, X. THPAC12, THPAC18, THPAC34,
Raparia, D. THPAC35, THPHO06
Ratcliffe, N. WEBA1
Ratcliffe, N. WEBA1, MOPAC40, MOPH012,
Rathke, J. MOPH015, WEBA19, THPAC27
Ratti, A. WEPA1
Raubenheimer, T.O. WEPHO08, WEPHO09, WEPMA09
Read, M.E. TUOCA1
Redaelli, S. WEZAA2
Reece, C.E. WEPH014
Rees, D. WEOAB2
Reid, T. MOPAC02
Reimann, O. WEAA1
Reinsch, M.W. MOPSM07, THPH014
Rencsok, R. THPMA03
Repkov, A.V. FRX01
Reva, V.B. WEPHO03, WEPHO04
Režanov, I.
Rhein, C.
Rice, S.A.
Riddick, B.C.
Riehn, E.J.
Rimmer, R.A.
Ristori, L.
Rivetta, C.H.
Rizzato, E.B.
Robak, S.
Robert-Demolaize, G.
Roberts, K.G.
Roberts, T.J.
Robin, D.
Robinson, D.
Rodrigues, G.O.
Rodriguez, J.A.
Rogers, C.T.
Rogers, G.C.
Rogovsky, Yu. A.
Romanenko, A.
Romanov, A.L.
Romanov, G.V.
Romero, W.P.
Roncarolo, F.
Rong, L.Y.
Rosas, P.J.
Rose, J.
Rosenzweig, J.B.
Roser, T.
Rossi, A.
Rossi, C.
Rossi, S.L.
Roth, I.
Rouleau, G.
Rowe, A.M.
Roybal, R.J.
Ruelas, M.
Ruisard, K.J.
Ruiz-Oses, M.
Rusnak, B.
Russell, S.J.
Russo, T.
Rybarczyk, L.
Ryne, R.D.

106 Pasadena, CA, USA, 29 September–4 October 2013
— S —

Sabbagh, P. MOPMA04
Sabharwal, S. WEYB3
Sabol, D.M. WEPAC11
Saethe, R.B. FRYBB2
Saewert, G.W. THPBA17
Safranek, J.A. TUOCB1
Saha, P. TUPBA24
Sahai, A. A. MOPAC10
Saini, A. A. MOPMA10, MOPMA12, MOPMA13, WEPCAC32
Saito, K. FRYBA1, WEPAC20
Sajaev, V. TUOBB2, WE0AA3, MOPHO06, MOPHO07, MOPHO09, WEPMS06, WEPMS07, WEPMS12
Sakaue, K. TUPMA01, WEBA02, TUPMA03, WPHM03
Salvachua, B. WEPCAC05
Samms, T. TUOCA2
Samoshin, A.V. WEPHO05, WEPHO06, WEPHO07
Sampson, P. TUOCA1
Samulyak, V. WEPCAC05
Sanchez Alvarez, J.L. TUPMA05
Sandberg, J. WEPCAC05
Sandoval, Jr., G. M. TUOCA2, TUPMA02, WPHH06, WEPMS03
Sannibale, F. TUPMA02, WPHH06, WEPMS03
Santana, M. WPHH06, WEPMS03
Sasaki, S. TUPMA02, WPHH06, WEPMS03
Sato, R. FRXB1
Sato, S. THPMA01
Satogata, T. THDAA2
Sattarov, A. THPBA28
Saunders, J. MOPMA05, MOPSM03
Savage, P. THPMA05, MOPSM03
Savard, G. WEPCAC28
Savilov, A.V. MOPMA05
Savino, J.J. WEPCAC28
Sayed, H. K. TUPMA05
Scaminaci, A.J. WEPCAC28
Scarpine, V.E. TUPMA05
Scarvie, T. MOPAC16
Schächter, L. MOPMA14, MOPMA17, WE0BB2, MOPAC19
Schaff, W.J. TPHMA04
Schappert, W. THPMA04
Schaumburg, H.D. THPMA04
Schempp, A. THPMA04
Schekel, T. TPHMA04
Schlott, V. TPHMA04
Schmalzle, J. TPHMA04
Schoefer, V. TPHMA04
Schoenlein, R.W. TPHMA04
Schreiber, G. TPHMA04
Schoeck, K. TPHMA04
Schroeder, C.B. MOPMA11, MOPMA12, MOPMA13, TUPMA08, THPMA08
Schroeder, K.M. WE00A4, WE00A5
Schubert, S.G. THPAC12, THPAC17
Schulte, R.W. WEOCB1
Schulteiss, C. WEPHO06, WEPHO07
Schulteiss, T. TUPSM04
Schultz, R.P. WEPMA16
Schwartz, B.T. MOPAC35, MOPBA22, TUPHO02
Schwartz, J. THPBA21
Schwarz, S. FRYBA2, MOPMA07, MOPSM07, THPBA12
Schwarz, T.A. TU0DA1
Scoby, C.M. THPAC32
Scrivens, R. MOZBA1
Sears, J. WEPAC11, WEPAC13, THPAC19, THPMA07
Sedillo, J.D. THPAC25
Seki, H. THOAB1
Seletsksiy, S. TUPBA12, WEPSM16, THPAC16
Semenov, A. THPAC21
Senchenko, A.I. MO0AA2
Sereno, N. WEOAA3, THPH003
Sergatskov, D.A. WEPAC27, WEPAC28
Serpico, C. WEPMA01, WEPMA02
Serrano, C. WEOAA1
Sessler, A. TUPAC16
Sethna, J.P. WEPAC12
Seung, S. THOAA2, MOPBA17
Severson, M.C. TUPMA19
Seviour, R. THODA1
Shabbir, E. MOPAC42
Shaftan, T.V. MOPBA17, MOPHO16, MOPHO17, TUPMA05, TUPMA06, TUPMA07
Shao, X. MO0CB1, MOPAC48
Shapiro, M.A. THOBA1, MOPSM06, WEPBA13, WEPBA14
Shapovalov, R.V. THPSM21
Sharamentov, S.I. WEOAB2, MOPSM01
Sharkov, G.B. WEPHO03, WEPHO04
Sharma, A.S. TUPAC02
Sharma, S.K. THPAC09, THPAC10
Shatilov, D.N. MO0DB1
Shatunov, PYu. MO0AA2
Shatunov, Y.M. MO0AA2
Shaw, B. THOCA2
Shaw, J.L. MOPAC21, MOPAC22, MOPAC42, MOPAC45
Shchegolkov, D.Y. MOPAC23, MOPAC24, TUPMA13, TUPMA14, WEPAC33
Shchelkunov, S.V. MOPSM08, MOPSM09, WEPHO19, WEPHO20
Shea, T.J. MOPMA04
Sheehy, B. TU0AA1, MOPSM04, TUPSM06
Sheffield, R.L. TUPMA12
Shelley, EE. MOPMA15, TUPSM16
Shemelin, V.D. WEPAC13
Shemyakin, A.V. TUPSM10, THPAC21
Shen, G. MOPHO17
Shen, X. TUPAC12, TUPBA04
Sheromov, M.A. THPMA03
Shi, J. WEPMA04

108 Pasadena, CA, USA, 29 September–4 October 2013
Shibuya, S.
Shiltsev, V.D.
Shin, K.R.
Shin, Y.-M.
Shirai, T.
Shiraishi, S.
Shiroyanagi, Y.
Shishlo, A.P.
Shkolnikov, P.
Shkvarunets, A.G.
Shoaf, S.E.
Shoda, K.
Shrey, T.C.
Shuptar, M.
Shwartz, D.B.
Sikora, J.P.
Silva, L.O.
Simakov, E.I.
Simeoni, W.
Simos, N.
Simpson, B.E.
Singh, O.
Sinyatkin, S.V.
Sipahi, N.
Sipahi, T.
Sirio, C.
Skaritka, J.
Skiadopoulos, D.
Skrinsky, A.N.
Smedley, J.
Smekens, D.
Smirnov, A.V.
Smirnov, A.Yu.
Smirnov, D.
Smith, E.N.
Smith, K.S.
Smith, M.L.
Smith, T.L.
Smolenski, K.W.
Snopok, P.
Snydstrup, L.
Sodomaco, N.
Sokollik, T.
Soliday, R.
Solyak, N.
Somaschini, L.
Sylvester, C. THPBA16

— T —

Tagi, K. THPSM02
Taillardat, S. TUPSM01
Tajima, T. WEPAC33
Takahashi, T. FRXB1
Takatomi, T. WEOBA2, TUPSM01
Takayama, S. MOPMA04
Takibayev, A. TUPAC14
Talman, R.M. TUPAC14
Tan, Y. TUOCA2, TUPH001
Tanabe, T. WEPSM15, THPAC09, THPAC10, TUPAC11, TPHAC14, TPHAC15
Tang, C.-X. MOPAC03, WEPBA03
Tang, J.Y. THPSM04
Tanabe, T. WEOBA2, TUOAA1, THPAC11, THPAC14, THPAC15
Tang, Y. THPSM02
Tara(ne), H. THPB08, TPHBA09
Tartaglia, M.A. TUPBA16
Tauchi, T. TUPBA25
Tawada, M. WEODA1, TPHBA04
Taylor, M.C. WEYB2
Temkin, R.J. TUBA1, MOPSM06, WEPBA13, WEPBA14
Tennant, C. TUPH003, TUPH005
Tepikian, S. TUOAA1, TUOAA2
Terechkine, I. THPMA09
Terunuma, N. TUPMA01
Terryae, V.E. WEPSM04
Than, R. TUOCA2, WEPAC06, WEPAC07, TPHBA06
Tennant, C. TUOCA2, TUPBA08, TUPH001, TPHAC13, TPH009, TPH010
Thieberger, P. WEPMA11
Thomson, J.R. MOPMA04
Thomsen, H.D. MOPMA08
Threlkeld, E.W. TUPSM28
Thronson, C. MOPMA08
Thurman-Keup, R.M. THPAC21
Tian, J.M. TUODE1
Tian, K. TUPCM03, TPHAC37
To, H.L. MOPAC41, MOPAC42, MOPAC44
Toczydlowski, S. TUPSM04
Tod, A.M.M. TUPBA06
Tokyanov, Y. TUPBA06
Tollestrup, A.V. TUOAA1, MOPBA06, WEPMA12, WEPMA15, WEPMA17
Tomás, R. TUPBA04, TUPBA25
Tompkins, J.C. WEPMA17
Tong, H. THPBA22
To, Y. WEPMA02
Tovar, Y. TUOAA1, WEPMA03, WEPMA18, THPMA08, WEPMA12, WEPMA15, TPHOH18, WEPMA16, WEPMA17
Tóth, C. THOCA2
Trakhtenberg, E. WEODA3
Transtrum, M.K. WEPAC12
Trbojevic, D. THOAB2, TUPBA13, TUPBA14, TUPBA15

North American PAC 2013 111
Tremaine, A.M. MOPAC43
Trenikhina, Y. WEPAC27
Tresca, O. MOPAC34, THPAC33
Tsang, S.H. THOB1
Tschirhart, R.S. MOPMA09
Tsoupas, N. MOPBA05, TUPBA13
Tsuchimoto, M. THPAC02
Tsuchiya, K. WEOBA01, THPBA04, THPBA07
Tsun, E.S. MOPAC10, MOPAC47
Tsvetkov, P.V. THODA2
Tuozzolo, J.E. WEOBA01, WEPAC06, WEPAC07, THPH006, THPH007, THPH008, THPH010
Turgut, O. FR0A3, TUPAC25
Turroni, D. THPBA18
Turvey, M.W. TUPS22

— U —
Uesaka, M. THOB4, THPSM02
Umer, R. WEPMA02
Urakawa, J. WEOBA2, TUPBA25, TUPMA01, TUPS01

— V —
Vafaei-Najafabadi, N. THYAA2, THOCA1, MOPAC02, MOPAC37, MOPAC38, MOPAC45, MOPAC46
Valerio, C.A. MOZBA1
Valishev, A. M00DB1, TUOCA1, TUPAC15, TUPBA21, WEPBA17
Valles, N.R.A. THPMA07
Valloni, A. TUZAA2
van Tilborg, J. THOCA2
Vandygriff, D.M. THPBA28
Vasserman, I. WEPSM08, WEPSM09, WEPSM11
Vay, J.-L. THAP5, MOPAC20, THPBA20
Veitzer, S.A. MOPBA24, TUPAC13
Veljak, L. WEPMA02
Venturini, M. WEOA1
Verboncoeur, J.P. WEPAC35, WEPAC36
Veshcherevich, V. WEPAC11, THPMA07
Vieira, J. MOPAC02, MOPAC47, MOPAC49
Vikharev, A.A. WEPSM02, WEPSM04
Virostek, S.P. WEPMA03, WEPMA16, WEPMA18, WEPMA19, WEPMA20, WEPMA21
Vivoli, A. TUODB2
Vogelaar, R.B. THPBA23
Volk, J.T. WEPMA16
Vondrasek, R.C. MOPSM01
Vorobiev, L.G. MOPBA12
Vretenar, M. MOZBA1
Vrielink, A.R. THPAC01

— W —
Waldron, W.L. WEOAA1, WE0BB2, MOPAC19
Waldschmidt, G.J. WEPAC02, WEPAC44
Walker, R.P. MOOAB2
Walton, G.W. THPSM11

Pasadena, CA, USA, 29 September–4 October 2013
Walz, D.R. THYAA2, TH0CA1, MOPAC37, MOPAC38, MOPAC46, TUOCB2, WE00A1, MOPHO23, **TUPAC16**, **WEPA12**

Wan, W. TUOC2, WE00A1, THPBA07

Wanderer, P. TUDD1

Wang, B. TUPBA03, **TUPSM06, TUPSM07, TUPSM08**, THPAC12, **THPAC18, THPAC34**, THPAC35, THPH006

Wang, D. TUOA1

Wang, E. **MOPHO16, MOPHO17, TUPMA07**

Wang, G. TUPMA07, WE00A1, WEPA02, WEPAC44, WEPAC47, WEPAC48, WEPHO16, WEPHO18

Wang, G.M. TUPMA07

Wang, H. **TUPBA03**

Wang, J. **MOPAC19**

Wang, L. TUXA2, THYAA2, TUPBA25

Wang, N. TUPMA04, TUPBA07

Wang, S. TUPMA07

Wang, S.C. TUPMA07

Wang, Y. TUXA2, THYAA2, TUPBA25

Wangler, T.P. **MOPMA17**

Warnock, R.L. **THPAC26**

Warwick, T. **WEPAC03**

Washio, M. **THPHO01**

Watkins, H.A. **THPMA02**

Weathersby, S.P. **THPMA02**

Webber, R.C. **THPMA02**

Weggel, R.J. **THPMA02**

Wehlitz, R. **THPMA02**

Wei, J. **THPMA02**

Weis, C.D. **THPMA02**

Wells, R.P. **THPMA02**

Welton, R.F. **THPMA02**

Weng, W.-T. **THPMA02**

Werner, G.R. **THPMA02**

Westferro, E. **THPMA02**

White, G.R. **THPMA02**

White, S.M. **THPMA02**

Wilcox, R.B. **THPMA02**

Wildman, D. **THPMA02**

Willeke, F.J. **THPMA02**

Williams, J.E. **THPMA02**

Williams, M. **THPMA02**

Williams, S. **THPMA02**

Williams, S.J. **THPMA02**

Willis, K.J. **THPMA02**

Wiseman, M. **THPMA02**

Wisniewski, E.E. **THPMA02**

Witte, H. **THPMA02**

Wittmer, W. **THPMA02**

Wolff, D. **THPMA02**

Wong, J.J. **THPMA02**

Wong, M. **THPMA02**

North American PAC 2013 113
Woodley, M. TUPBA25
Woods, K.E. WEOCB1, TH0AA2, THPAC36
Wu, D. WEPH013
Wu, G. WEPAC01, WEPAC44
Wu, J. MOPHO15
Wu, Q. TUPSM06, WEPAC07, THPAC34,
THPAC35, THPH06
Wu, S. MOPBA17, THPAC32
Wu, S.S.Q. MOPAC43, TUPMA10
Wu, X. FRYBA2, MOPMA07, MOPSM07
Wu, Z. M00BB2, THYAA2, THOCA1, MOPAC28, MOPAC29, MOPAC33,
MOPAC38, MOPAC46

Xi, Y. M00CB2
Xiang, D. THPAC27
Xiao, A. WEOA3, TUPAC08, WEPM07,
WEPM08, WEPM09, WEPSM11,
WEPSM12, WEPSM13, THPMA05
Xiao, L. MOPBA18, WEPAC44, WEPAC45
Xiao, M. TUPBA03
Xie, J. THPAC12, THPAC17
Xin, T. WEPAC07, THPAC34, THPAC35,
THPH06
Xin, W.Q. TUODB1
Xu, G. TUPBA03
Xu, H.B. THPMS05, THPMS06, THPMS07
Xu, J.Z. WEPM11
Xu, S.Y. TUPBA03
Xu, T. FRYBA1, THPBA13, THPBA28
Xu, T. MOPAC18
Xu, T.G. TUODB1
Xu, W. WEPAC06, THPH006
Xu, X.L. MOPAC03, MOPAC04, MOPAC05,
MOPAC47
Xu, Y. WEPAC20, THPBA13

Yakimenko, V. MOPAC49, THYAA2, MOPHO19,
TUPMA08, WEPMA24, THPAC28,
THPAC33
Yakovlev, V.P. MOPSM08, WEPAC14, WEPAC15,
WEPAC21, WEPAC22, WEPAC23,
WEPAC24, WEPAC25, WEPAC26,
WEPAC27, WEPAC28, WEPAC29,
WEPAC32, WEPH015, WEPH019
Yamamoto, M. THPMS02
Yamaoka, H. WEOA1, THPBA04, THPBA07
Yamazaki, Y. FRYBA1
Yampolsky, N.A. MOOAB1, TU0BB3, TUPMA14
Yan, F. THPMS04
Yan, L.X. MOPAC03, WEPBA03
Yan, Y.T. TU0CB1
Yancey, J.A. WEPAC06
Yang, B.X. TUPMA04, WEPMS14, THPAC08
Yang, L. MOPH017
Yang, S. WEPAC47

114 Pasadena, CA, USA, 29 September–4 October 2013
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang, Y.</td>
<td>THPSM04</td>
</tr>
<tr>
<td>Yang, Y.</td>
<td>WEPAC01, WEPAC02</td>
</tr>
<tr>
<td>Yang, Z.</td>
<td>THPSM04</td>
</tr>
<tr>
<td>Yao, C.</td>
<td>MOPHO26, TUPMA03, TUPMA04, WEPAC13</td>
</tr>
<tr>
<td>Yarmohammadi Satri, M.</td>
<td>MOZBA1</td>
</tr>
<tr>
<td>Yauz, D.</td>
<td>TUPMA05, THPSM06, THPSM07</td>
</tr>
<tr>
<td>Ying, Y.J.</td>
<td>THPH010</td>
</tr>
<tr>
<td>Yip, K.</td>
<td>TUODA1, MOPBA06, TUPBA22, WEPA12, WEPA15, WEPA17, THPBA22, TPHBA26, THPH019</td>
</tr>
<tr>
<td>Yonehara, K.</td>
<td>MOPHO26</td>
</tr>
<tr>
<td>York, R.C.</td>
<td>THOBA4</td>
</tr>
<tr>
<td>Yoshida, M.</td>
<td>THPSM03</td>
</tr>
<tr>
<td>Yoshida, Y.</td>
<td>MOPMA21, THPH019</td>
</tr>
<tr>
<td>Yoshikawa, C. Y.</td>
<td>TUPMA03, TUPMA04, WEPSM13</td>
</tr>
<tr>
<td>Yu, P.</td>
<td>TUPBA03</td>
</tr>
<tr>
<td>Yue, Y.</td>
<td>TUPAC04, TUPPH03</td>
</tr>
<tr>
<td>Yun, C.C.</td>
<td>TUPBA03</td>
</tr>
<tr>
<td>Yunn, B.C.</td>
<td>FROAA4, WEPBA02, THPH001, THPSM01</td>
</tr>
<tr>
<td>Yuri, Y.</td>
<td>TUPSM05</td>
</tr>
<tr>
<td>Yusof, Z.M.</td>
<td>TUPSM01</td>
</tr>
<tr>
<td>Yuyama, T.</td>
<td>THPSM01</td>
</tr>
</tbody>
</table>

Zalel, S.	THPSM10
Zaltsman, A.	THPH006
Zapasek, R.	WEPHO06, WEPHO07
Zelenski, A.	MOOBA2
Zeller, A.	FRYBA1, THPBA12
Zemlyansky, I.	M00AA2
Zeng, L.	TUODB1
Zeng, M.	MOPAC39
Zeno, K.	TUOAA2
Zha, H.	WEPA04
Zhai, J.Y.	TUPBA03
Zhang, C.	TUODA1, TUPAC14, WEPAC03, WEPBA11, THMPA02
Zhang, C.J.	MOPBA11, TUPPH005, TUPPH005
Zhang, H.	FROAA1, TUPAC34
Zhang, H.D.	MOPS06
Zhang, J.X.	WEPSM17
Zhang, S.	TUOC2, TUPHO01, THPH010
Zhang, W.	TUZA2A1, TUPAC27, TUPAC28, TUPHO02, TUPHO03, TUPHO04, THPH005, WEPAC48
Zhang, Y.	FRYBA1, WEPBA11, THPMA02
Zhao, FX.	TUODB1
Zhao, Q.	WEOA01, WFRYBA1, TUPSM20, MOPMA19, MOPMA20
Zhao, S.	MOPMA02
Zhao, Z.T.	THPSM05, THPSM06, THPSM07
Zheng, N.	WEPAC03, WEPBA11, THPMA02
Zheng, Z.	WEOAA3, MOPAC12, MOPHO19, TUPMA08, WEPAC16
Zholents, A.	WEXA1
Zhou, M. \(\text{MOPAC37} \)
Zhou, X. \(\text{THOBA4} \)
Zhukov, A.P. \(\text{WEYA2} \)
Zimmermann, S. \(\text{WE0AA1} \)
Zinkann, G.P. \(\text{WE0AB2} \)
Zipf, P. \(\text{THPMA01} \)
Zisman, M.S. \(\text{WEPMA18, WEPMA26, THPH018, TUOBA2} \)
Zlobin, A.V. \(\text{THPBA18, THPBA19} \)
Zolkin, T.V. \(\text{MOODB2, TUPAC30, THPH023} \)
Zolotorev, M.S. \(\text{TUODA2, WE0AA1} \)
Zong, Z.G. \(\text{WE0DA1, THPBA04, THPBA07} \)
Zorzut, S. \(\text{THPMA04} \)
Zou, Y. \(\text{MOPMA03} \)
Zuchnik, T.J. \(\text{TUPSM13} \)
Zuo, S.S. \(\text{MOPAC12} \)
Zutshi, V. \(\text{TUPBA24} \)
Zvyagintsev, V. \(\text{THPAC01, THPBA02} \)