Status of Short X-ray Pulse (SPX) Project at the Advanced Photon Source

Ali Nassiri
On behalf of APS-U SPX Technical Team
Accelerator Systems Division

2011 Particle Accelerator Conference
Wednesday, March 30, 2011
Outline

- Transverse RF Chirp Concept
- Ultrafast Science with SPX
- SPX Technical Components
- Performance Parameters
- R&D Plan
- Summary
Transverse Rf Chirp Concept\(^1\)

Baseline: 2 MV deflecting voltage, ~2ps (FWHM) x-ray pulses

- **Input Coupler**
- **LOM Damper**
- **HOM Dampers**

RFdeflectingcavity

Cavity frequency is harmonic \(h \) of ring rf frequency

Ideally, second cavity exactly cancels effect of first if phase advance is \(n \times 180 \) degrees: "outside" users nominally unaffected

Radiation from tail electrons

Radiation from head electrons

Pulse can be sliced or compressed with asymmetric cut crystal

Future Goal: 4 MV deflecting voltage, ~1ps (FWHM) x-ray pulses

1 A. Zholents et al., NIM A 425, 385 (1999).
Ultrafast Science with SPX

- SPX is a new generation of ultrafast x-ray source that can probe matter with nanometer and picosecond precision. World’s first high average, **high repetition rate, tunable, polarized ultrafast x-ray source for a variety of applications in chemistry, materials, atomic & molecular physics and biology**

- It enables time-resolved x-ray scattering at the picosecond timescale while retaining the powerful characteristics of synchrotron radiation.

- **Picosecond timescale is ideal to probe dynamics in nano-scale systems which evolve at the speed of sound ~1nm/ps.**
SPX Technical Components

- Two cryomodules, each with 4 SC deflecting cavities equipped with:
 - Tuner with warm motor and piezo
 - LOM/HOM dampers
 - Precision cavity alignment

Dish Head
Saddle

JLab scissor jack style

4-wedge damper design
Peak power density: 42 W / cm³

Mark I (“baseline”)
Mark II (“alternate”)

SPX deflecting cavities, **THP212**, G.Waldschmidt

21mm x 120mm

Helium vessel riser will be sized for heat load
Helium volume 9.4 L

High precision actuators each end of cavity for vertical “Y” motion (1mm)

Precision alignment concept

Nitronic rods for fixed “X” direction

Status of SPX, March 30, 2011, A. Nassiri
SPX Technical Components (2)

A cryoplant for 2.0K operation

- Refrigeration @ 2.0K (4 MV) 320 W with 100% capacity margin
- Refrigeration @ 5-8 K for dist. & intercepts 500 W
- LN2 is planned for 80K shield cooling 4 kW

High-power rf system based on 10-kW CW klystrons
 - One klystron per cavity

Low-level rf system capable of delivering required amplitude and phase stability
 - Primarily regulate the amplitude and phase of the SPX deflecting cavity fields
 - Engineering and production of LLRF system for 8 cavity installation

Diagnostics
 - Measure beam tilt inside and outside SPX zone
 - Measure beam arrival time with respect to a phase reference and provide this information to low-level rf controls.
 - Cerenkov detectors/loss monitors to protect cavities

X-ray detector is the key to Beam Arrival Time array tilt monitor
Need fast (sub-ns rise time, low-intensity dependence – Diamond a good candidate
Initial test with polycrystalline diamond detector
 - rise time ~160 ps

Example: ELBE Cryoplant
220 W@ 1.8K + 200 W @80K
Single-Bunch and Multi-Bunch Stability Result

- SPX system in 24-singlets (4 mA per bunch) does not degrade the performance of single particle dynamics.
- Q's of longitudinal and transverse planes are very low (20 -800)
- Based on current operations coherent damping is applicable here
- Transverse plane would be stable in baseline number of cavities (8)
- Recent work demonstrates the possibility of “adjusting” hybrid pattern to reduce the worst-case growth rate

<table>
<thead>
<tr>
<th>Plane</th>
<th>Growth Rate</th>
<th>Damping Rate</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Synchrotron Radiation</td>
<td>Coherent</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>30 s⁻¹</td>
<td>208 s⁻¹</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Horizontal</td>
<td>180 s⁻¹</td>
<td>104 s⁻¹</td>
<td>>600 s⁻¹</td>
</tr>
<tr>
<td>Vertical</td>
<td>125 s⁻¹</td>
<td>104 s⁻¹</td>
<td>>600 s⁻¹</td>
</tr>
</tbody>
</table>

1 L. Emery, Y-C. Chae

Symmetric 202 mA in 24 bunches
153 ns spacing

0.5 μs train
186 mA in eight septuplets (8x7)
1.594 μs gaps

16 mA
Cavity Impedance Budget

Monopole Stability Threshold:

\[R_s * f_p < 0.5 \text{M} \Omega - \text{GHz} \]

Dipole Stability Threshold:

\[R_t < \frac{1.5 \text{M} \Omega}{m} \text{ Horizontal dipole} \]
\[R_t < \frac{4.5 \text{M} \Omega}{m} \text{ Vertical dipole} \]

Cavity to cavity coupling will be tuned to meet stability specification for a single horizontal dipole mode.

Status of SPX, March 30, 2011, A. Nassiri
Tolerances from Beam Dynamics Simulations\(^1\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Future Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common mode amplitude variation(^1)</td>
<td><1%</td>
<td><1%</td>
</tr>
<tr>
<td>Common mode phase variation(^2)</td>
<td><4.8 deg</td>
<td><4.8 deg</td>
</tr>
<tr>
<td>Voltage amplitude mismatch between cavities(^3)</td>
<td><0.8%</td>
<td><0.4%</td>
</tr>
<tr>
<td>Voltage phase mismatch error between cavities(^4)</td>
<td><0.14 deg</td>
<td><0.07 deg</td>
</tr>
</tbody>
</table>

\(^1\) Keep intensity and pulse length variation under 1% rms.
\(^2\) Keep intensity variation under 1% rms.
\(^3\) Keep rms emittance variation outside SPX region under 10% of nominal 35 pm.
\(^4\) Keep rms beam motion outside of SPX region under 10% of beam size/divergence.
Conceptual System Design Approach

- **Common Mode Strategy**
 - Main RF used to lock beam to MO via Beam Arrival Time diagnostic
 - BPM Array 1 corrects for common mode phase error < 100 Hz
 - Deflected Tilt Monitor corrects for common mode amp error < 100 Hz
 - SPX RF system responsible for noise spectrum > 10Hz

- **Differential Mode Strategy**
 - Orbit Feedback (BPM Array 2) controls differential phase error < 100 Hz
 - Residual Tilt Monitors control differential amp error < 100 Hz
 - SPX RF system responsible for noise spectrum > 10Hz

C.M. amp variation <1%
C.M. phase variation <4.8 deg
D.M. amp variation <0.4%
D.M. phase variation < 0.07 deg
R&D Status

- Baseline cavity tests performed at JLab. It meets rf performance with 10% safety margin on deflecting voltage.

 Contributed talk, **WE OBS13**, H. Wang

- Fabrication of the “alternate” cavity is underway at JLab.

- Design of a cryomodule and ancillary components including dampers, tuner, precision alignment system have started.

- Collaborative work with LBNL on the development of low-level rf controllers and precision timing and synchronization system have started.

 - On-going effort on lattice development, beam dynamics, collective effects

 - Installation in ring of a 2-cavity cryomodule is planned for a single sector test.

 - Address risks that cannot be addressed by off-line experiments

 - Chirp is sufficiently well-defined to allow proof-of-concept for x-ray pulse length reduction.

Plot courtesy of H. Wang, JLab
Summary

- Short x-ray pulse generation using SC rf deflecting cavities gives much higher average flux compared to other schemes:
 - Laser slicing
 - Low-α operation
 - RF phase modulation
 - Harmonic cavity

- SPX should provide \sim2 ps FWHM or less x-ray pulses to
 - 3 insertion devices and 2 bending magnets beam lines

- Single-sector test should allow us to have an early look at chirped x-rays and address additional risks.

- R&D tasks are progressing well.

- Collaboration with JLab and LBNL is off to a great start.

- We are very excited and looking forward to proof-of-concept demonstration in 2013.
Acknowledgements

Thanks to the following people for their contributions:

LBNL: J. Byrd, L. Doolittle, G. Haung

SLAC: C-K. Ng, Z. Li