Early Commissioning Experience and Future Plans for 12 GeV CEBAF

Michael Spata
Center for The Advanced Studies of Accelerators
Outline

- Introduction
 - Jefferson Lab Overview
 - Scope of the 12 GeV Upgrade
 - Accelerator Overview

- Commissioning
 - Preparation
 - Execution

- Future Plans
 - Meeting Beam Requirements
 - Optimizing the LINAC Performance
 - Out-year Run Plans

- Acknowledgements
Core Competencies

- Nuclear Physics Research
- SRF Technology Leadership
- Polarized Electron Sources
- Cryogenics Research and Development
- Accelerator Physics and Diagnostics Development
Quick Facts

- 180 M$ annual operating budget
- 759 Full Time Employees
- 1,385 Active Users
- Produces ~1/3 of US PhDs in Nuclear Physics
- 169 acres and 83 buildings and trailers
Scope of the 12 GeV Upgrade

- Add 5 high performance cryomodules in each linac and their associated LLRF Systems
- Double the capacity of the Central Helium Liquefier
- Upgrade magnets and power supplies for recirculation arcs
- Upgrade Extraction, Instrumentation and Diagnostics, and Safety Systems
- Add new beamlines for Arc 10 and Hall D
- Add new experimental Hall D and upgrade existing Halls

Enhanced capabilities in existing Halls
CEBAF Overview
Outline

- Introduction
 - Jefferson Lab Overview
 - Scope of the 12 GeV Upgrade
 - Accelerator Overview

- Commissioning
 - Preparation
 - Execution

- Future Plans
 - Meeting Beam Requirements
 - Reducing RF Trip Rate
 - Out-year Run Plans

- Acknowledgements
Organizational Structure

- **Commissioning Advisory Board**
 - Accelerator Division Deputy (Leader)
 - 12 GeV Associate Project Manager
 - Director of CASA
 - Physics Division Deputy
 - Source/Injectors Department Head
 - Engineering Division Head

- **Commissioning Planning Team**
 - Director of Accelerator Operations (Leader)
 - CASA Deputy
 - Engineering Support Liaison
 - Operations Group Leader
 - B-Team Leader
 - Operability Manager
 - Program Deputy

- **Geographic Integrators**
 - Operability Manager (Leader)
 - Injector Integrator
 - Linac Integrator
 - Transport Integrator
 - Hall A Integrator
 - Hall B Integrator
 - Hall C Integrator
 - Hall D Integrator
 - Program Deputy (attends meetings)

- **Beam Transport Team (B-Team)**
 - B-Team Leader
 - CASA Department Staff
 - Source Department Staff
 - Injector Group Staff

- **Program Deputy**
 - Two-Week Rotation

- **Crew Chiefs**
- **Controls Support**
- **Engineering Support**

- **Operators**
- **Accel Scientists**
Organizational Structure

Reviews plan and provides feedback.

Develops the high level plan.

Ensures that the beam line segments are ready for beam.

Develops the detailed plan.

Executes the plan.
Hot Checkout Tool

- A tool to capture the readiness of all hardware for beam operations.
- Over 15000 components in system for 5.5 pass to Hall D
- Red – component not yet checked.
- Yellow – component checked by technician.
- Green – component verified ready by system expert.
Model-Based Operations

- Pre-Injector Layout
- Historic Hall A, B, C Layout
- ARC 1-9 Layout
- New ARC 10 Beamline
- New Extraction Layout
- New Hall D Beamline
- New Injector/LINAC Layout
- New Spreader and Recombiner Layout
- Survey and Alignment
- Cryomodule Commissioning
- CEBAF Element Database
- Element Coordinates
- Survey Coordinates
- Field Coordinates
- TWISS Parameters
- Field Maps
- E_{max}
- Q_0
- Accelerator Settings
- Magnet Measurement Facility
- CEBAF Control System
Cryomodule Commissioning

- Between May and November of last year 415 cavities were recommissioned in advance of beam operations.
 - Measured:
 - Maximum accelerating gradient
 - Cavity Q_0s
 - Field emission survey

<table>
<thead>
<tr>
<th>Linac</th>
<th>Type</th>
<th>Ncav</th>
<th>$<G_{\text{max}}>$ (MV/m)</th>
<th>$<Q_0@G_{\text{max}}>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>C20</td>
<td>120</td>
<td>8.61</td>
<td>3.91x10^9</td>
</tr>
<tr>
<td>NL</td>
<td>C50</td>
<td>40</td>
<td>11.72</td>
<td>3.74x10^9</td>
</tr>
<tr>
<td>NL</td>
<td>C100</td>
<td>40</td>
<td>20.86</td>
<td>8.11x10^9</td>
</tr>
<tr>
<td>SL</td>
<td>C20</td>
<td>110</td>
<td>9.09</td>
<td>4.33x10^9</td>
</tr>
<tr>
<td>SL</td>
<td>C50</td>
<td>47</td>
<td>11.55</td>
<td>3.81x10^9</td>
</tr>
<tr>
<td>SL</td>
<td>C100</td>
<td>40</td>
<td>19.77</td>
<td>7.44x10^9</td>
</tr>
</tbody>
</table>
C100 Cavity Performance

C100 Q_o at E_{max}

C100 E_{max}

Cavity Index

MV/m

Cavity Index
- Magnet Measurement Facility Data
 - All dipole and septa magnets measured for field quality.
 - All quad families measured for field quality.
 - Integrated field and dipole gradient data entered into the CEBAF Element Database.
 - Control system gets information from the CEBAF Element Database.
Diagnostics for New Beamlines

Stripline Beam Position Monitor

Map of BPM Response from Stretched-Wire Test Stand

Synchrotron Light Monitor

Synchrotron Light from 9 GeV Beam in Arc10
Commissioning Milestones
Three main goals for the November 2013 – May 2014 run period:

- Deliver 2.2 GeV Beam to the 2R dump.
- Deliver greater than 6 GeV beam to Hall A and run first CW beam of the 12 GeV era to an experimental Hall.
- Deliver greater than 10 GeV in 5.5 passes to Hall D.
Commissioning Milestones

- **2.2 GeV Beam on ARC 2 Viewer**
- **8 Hour Availability for 2.2 GeV Run**
- **First data from Scattered Electrons in Hall A**
- **Six Beams in the NL for the First Time**
- **10.5 GeV Beam to Hall D Ramp**
- **10.5 GeV Beam to Hall D Tagger Dump**
Outline

- Introduction
 - Jefferson Lab Overview
 - Scope of the 12 GeV Upgrade
 - Accelerator Overview
- Commissioning
 - Preparation
 - Execution
- Future Plans
 - Meeting Beam Requirements
 - Reducing RF Trip Rate
 - Out-year Run Plans
- Acknowledgements
Meeting Beam Requirements

- Some of the challenges to refine CEBAF Operations:
 - Optimizing the performance of the SRF Systems.
 - Understanding Synchrotron Radiation Effects.
 - Synchrotron Radiation Compensation Coils.
 - Minimizing emittance growth due to synchrotron radiation losses.
 - Model Development - Reduce amplitude of tuning quads.
 - Linear Optics from Closed Orbit (LOCO) – measure body gradients of Spreader, Arc and Recombiner dipoles.
 - RayTrace – measure phase-space pseudo-ellipse using coordinated corrector kicks in x-plane and y-plane. Compare to model of phase-space evolution to look for point sources of model errors.
 - Ramp energy to 12 GeV to Hall D.
 - Dogleg Upgrade.
 - Tunnel Air Conditioning.
Optimizing the SRF Performance

<table>
<thead>
<tr>
<th>Run Period</th>
<th>Dates</th>
<th>Max. 5.5pass Energy</th>
<th>Trip Downtime Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC-III</td>
<td>Fall 2014</td>
<td>11 GeV</td>
<td><20% <12</td>
</tr>
<tr>
<td>ACC-IV</td>
<td>Spring 2015</td>
<td>11 GeV</td>
<td><17% <10</td>
</tr>
<tr>
<td>Phy-I</td>
<td>Fall 2015</td>
<td>12 GeV</td>
<td><20% <12</td>
</tr>
<tr>
<td>Phy-II</td>
<td>Spring 2016</td>
<td>12 GeV</td>
<td><17% <10</td>
</tr>
<tr>
<td>Phy-III</td>
<td>Fall 2016</td>
<td>12 GeV</td>
<td><13% <8</td>
</tr>
<tr>
<td>Phy-IV</td>
<td>Spring 2017</td>
<td>12 GeV</td>
<td><12% <7</td>
</tr>
<tr>
<td>Phy-V</td>
<td>Fall 2017</td>
<td>12 GeV</td>
<td><10% <6</td>
</tr>
<tr>
<td>Phy-VI</td>
<td>Spring 2018</td>
<td>12 GeV</td>
<td><10% <6</td>
</tr>
<tr>
<td>Ultimate</td>
<td></td>
<td>12 GeV</td>
<td><5% <3</td>
</tr>
</tbody>
</table>

Multiple options for reaching the availability goals over time:

- Improve C20 trip models, maximize gradient/minimize trip rate.
- C50 program, one C50 refurbishment is in progress.
- Build more C100s.
- In-situ Helium Processing to reduce field emission.
Helium Processing

Helium Processing of a C100 Cryomodule:

- Introduce helium gas into cavity vacuum space.
- Run RF to clean cavity surfaces.
- Warm up and pump down to remove residual gas.
- Improves high-field Q, reduces x-ray production and greatly reduces incidence of arcing at the cold ceramic window.
Future Run Plans

Fall 2014 Run

- Restore 5.5 pass beam to the Hall D Tagger vault.
- Deliver CW electron beam to Hall D Tagger and first photon beam to Hall D for detector checkout.
- Commission the 499 MHz RF Separators and extraction beamlines.
- Refine beam tuning procedures.
- Study synchrotron radiation induced emittance growth in the upper passes.
- Parasitic support of an early Physics run in Hall A and Hall B.
Future Run Plans

Winter 2015 Shutdown

• Upgrade the Dogleg system to provide additional capacity to adjust the machine pathlength.
• Install the 5th pass 750 MHz RF Separator system.
• Install the 250 MHz drive lasers for the polarized source.

The last two bullets allow for simultaneous operation of Hall A and Hall D at the highest pass and for simultaneous 4-Hall operations.

Spring 2015 Run

• Commission the 750 MHz RF Separators.
• Commission the 250 MHz Drive Laser system.
• Deliver beam for Physics contingent on funding.
Future Run Plans

Summer 2015 Shutdown

Major installation work is planned for this shutdown that will enable us to make the push to 12 GeV for the first time. The highlights for the shutdown are:

• Installation of a C50 cryomodule.
• Installation of the tunnel air conditioning.
• Completion of a lab wide upgrade of the power distribution, cooling towers and network.
• Helium processing of SRF cryomodules to reduce field emission and increase the energy reach of the linacs.
Future Run Plans

Fall 2015 Run

• Demonstrate 12 GeV capability for the first time.
• Finalize optics setup, energy scaling and procedures.

Spring 2016 Run

• Establish beam to Halls B and C in preparation for detector checkout.
• Deliver beam in support of Hall B and C detector checkout.
• Support Engineering run in Hall D and Physics in Hall A.
• Deliver beam for Physics contingent on funding.
Acknowledgements

This work presented on behalf of the Laboratory staff in general and especially for the members of the Beam Transport Team.

And finally….thanks to the organizing committee for giving me the opportunity to come and talk about our recent commissioning experience.