Keyword: power-supply
Paper Title Other Keywords Page
TUPB108 Uppsala High Power Test Stand for ESS Spoke Cavities rf-amplifier, linac, cryomodule, controls 711
  • R.A. Yogi, T.J.C. Ekelöf, V.A. Goryashko, L. Hermansson, M. Noor, R. Santiago Kern, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • D.S. Dancila, A. Rydberg
    Uppsala University, Department of Engineering Sciences, Uppsala, Sweden
  • K.J. Gajewski, T. Lofnes, R. Wedberg
    TSL, Uppsala, Sweden
  • R.J.M.Y. Ruber
    CERN, Geneva, Switzerland
  The European Spallation Source (ESS) is one of the world’s most powerful neutron source. The ESS linac will accelerate 50 mA of protons to 2.5 GeV in 2.86 ms long pulses at a repetition rate of 14 Hz. It produces a beam with 5 MW average power and 125 MW peak power. ESS Spoke Linac consists of 28 superconducting spoke cavities, which will be developed by IPN Orsay, France. These Spoke Cavities will be tested at low power at IPN Orsay and high power testing will be performed at a test stand which will be set up at Uppsala University. The test stand consists of tetrode based RF amplifier chain at 352 MHz, 350 kW power and related RF distribution. Outputs of two tetrodes shall be combined with the hybrid coupler to produce 350 kW power. Preamplifier for a tetrode shall be solid state amplifier. As the spoke cavities are superconducting, the test stand also includes horizontal cryostat, Helium liquefier, test bunker etc. The paper describes features of the test stand in details.  
THPB092 Recent Improvements in SPring-8 Linac for Early Recovery from Beam Interruption klystron, gun, linac, electron 1035
  • S. Suzuki, T. Asaka, H. Dewa, H. Hanaki, T. Kobayashi, T. Magome, A. Mizuno, T. Taniuchi, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo-ken, Japan
  The 1GeV SPring-8 linac is an injector for the SPring-8 synchrotron radiation storage ring with 8GeV booster synchrotron. In recent years, backup systems were installed to eliminate long-time interruption of the beam injections: The main gun system is usually operated, and the second gun is always pre-heated and can inject electron beams into a buncher section with an interval of several minutes in case the main gun failed. The first klystron, that feeds RF powers to the buncher system and the downstream klystrons, can be relieved by the next klystron with an interval of about 20 minutes by switching the waveguide circuit. When one of the eleven working klystrons faults, one of standby klystrons, which are kept for hot spares on line, is automatically activated to accelerate beams instead of the failed one without beam interruption. The total downtime in FY2012 was 0.12% in top-up operation user time. The averaged fault frequency was 0.2 times per day.