Keyword: instrumentation
Paper Title Other Keywords Page
MOPB030 Performance of First C100 Cryomodules for the CEBAF 12 GeV Upgrade Project cryomodule, cavity, linac, vacuum 237
  • M.A. Drury, A. Burrill, G.K. Davis, J. Hogan, L.K. King, F. Marhauser, H. Park, J.P. Preble, C.E. Reece, A.V. Reilly, R.A. Rimmer, H. Wang, M. Wiseman
    JLAB, Newport News, Virginia, USA
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the project is a doubling of the available beam energy of CEBAF from 6 GeV to 12 GeV. This increase in beam energy will be due primarily to the construction and installation of ten “C100” cryomodules in the CEBAF linacs. The C100 cryomodules are designed to deliver an average 108 MV each from a string of eight seven-cell, electropolished superconducting RF cavities operating at an average accelerating gradient of 19.2 MV/m. The new cryomodules fit in the same available linac space as the original CEBAF 20 MV cryomodules. Cryomodule production started in September 2010. Initial acceptance testing started in June 2011. The first two C100 cryomodules were installed and tested from August 2011 through October 2011, and successfully operated during the last period of the CEBAF 6 GeV era, which ended in May 2012. This paper will present the results of acceptance testing and commissioning of the C100 style cryomodules to date.
THPB091 Machine Protection Issues and Solutions for Linear Accelerator Complexes beam-losses, controls, radiation, linac 1032
  • M. Jonker, H. Schmickler, R. Schmidt, D. Schulte
    CERN, Geneva, Switzerland
  • M.C. Ross
    SLAC, Menlo Park, California, USA
  The workshop “Machine Protection focusing on Linear Accelerator Complexes” was held from 6-8 June 2012 at Cern. This workshop brought together experts working on machine protection systems for accelerator facilities with high brilliance or large stored beam energies, with the main focus on linear accelerators and their injectors. An overview of the machine protection systems for several accelerators was given. Beam loss mechanisms and their detection were discussed. Mitigation of failures and protection systems were presented. This paper summarises the workshop and reviews the current state of the art in machine protection systems.