Author: Sako, H.
Paper Title Page
MOPB096 Beam Loss Mitigation in J-PARC Linac after the Tohoku Earthquake 401
  • M. Ikegami, Z. Fang, K. Futatsukawa, T. Miyao
    KEK, Ibaraki, Japan
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
  • T. Maruta, A. Miura, J. Tamura, G.H. Wei
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • H. Sako
    JAEA, Ibaraki-ken, Japan
  The beam operation of J-PARC linac was interrupted by the Tohoku earthquake in March 2011. After significant effort for its restoration, we have resumed the beam operation of J-PARC linac in December 2011. After resumption of beam operation, we have been suffering from beam losses which were not observed before the earthquake. Tackling with the beam loss issues, we have been reached the comparable beam power for user operation to the one before the earthquake. In this paper, we present the experience in the beam start-up tuning after the earthquake with emphasis on the beam loss mitigation efforts.  
TUPB082 Beam Loss Track Measurements by a Fast Trigger Scheme in J-PARC Linac 663
  • H. Sako, T. Maruta, A. Miura
    JAEA/J-PARC, Tokai-mura, Japan
  Funding: Work partially supported by Grant-in-Aid for Challenging Exploratory Research
In J-PARC Linac, highest beam loss has been observed at the ACS (Annular-Coupled Structure linac) section. The primary source of the beam loss is considered to be H0 produced by an interaction of H beams with remnant gas. The H0 hits the beam duct, converted to H+, and escapes from the beam duct. To detect the H+'s and estimate the absolute magnitude of the beam loss, we constructed a detector system, which consists of 6 planes of hodoscopes made of 16 scintillation fibers with 64 x 64 mm2 area. The scintillation light is measured by multi-anode photomultipliers. In the ACS section, two planes to measure horizontal positions are installed, and at about 1 m downstream positions, two planes for horizontal measurements and two for vertical measurements are placed. We will reconstruct charged particles passing through all the 6 planes, and measure the velocity by time-of-flight and energy loss to identify particle species. We present new measurements since the recovery of the J-PARC after the earthquake started in April 2012 by a new fast trigger scheme using dynode signals of photomultipliers in order to improve signal-to-noise ratios.